中国で進む海中データセンター実証実験 ― 冷却効率と環境リスクのはざまで

世界的にデータセンターの電力消費量が急増しています。AIの学習処理やクラウドサービスの普及によってサーバーは高密度化し、その冷却に必要なエネルギーは年々増大しています。特に近年では、生成AIや大規模言語モデルの普及により、GPUクラスタを用いた高出力計算が一般化し、従来のデータセンターの冷却能力では追いつかない状況になりつつあります。

中国も例外ではありません。国内ではAI産業を国家戦略の柱と位置づけ、都市ごとにAI特区を設けるなど、膨大なデータ計算基盤を整備しています。その一方で、石炭火力への依存度が依然として高く、再生可能エネルギーの供給網は地域ごとに偏りがあります。加えて、北京や上海などの都市部では土地価格と電力コストが上昇しており、従来型のデータセンターを都市近郊に増設することは難しくなっています。

また、国家として「カーボンピークアウト(2030年)」「カーボンニュートラル(2060年)」を掲げていることもあり、電力効率の悪い施設は社会的にも批判の対象となっています。

こうした背景のもと、中国は冷却効率の抜本的な改善を目的として、海洋を活用したデータセンターの実証実験に踏み切りました。海中にサーバーポッドを沈め、自然の冷却力で電力消費を抑える構想は、環境対策とインフラ整備の両立を狙ったものです。

この試みは、Microsoftがかつて行った「Project Natick」から着想を得たとされ、中国版の海中データセンターとして注目を集めています。国家的なエネルギー転換の圧力と、AIインフラの急拡大という二つの要請が交差したところに、このプロジェクトの背景があります。

海中データセンターとは

海中データセンターとは、サーバーやストレージ機器を収容した密閉型の容器(ポッド)を海中に沈め、周囲の海水を自然の冷媒として活用するデータセンターのことです。

地上のデータセンターが空気や冷却水を使って熱を逃がすのに対し、海中型は海水そのものが巨大なヒートシンクとして働くため、冷却効率が飛躍的に高まります。特に深度30〜100メートル程度の海水は温度が安定しており、外気温の変化や季節に左右されにくいという利点があります。

中国でこの構想を推進しているのは、電子機器メーカーのハイランダー(Highlander Digital Technology)などの企業です。

同社は2024年以降、上海沖や海南島周辺で複数の実験モジュールを設置しており、将来的には数百台規模のサーバーモジュールを連結した商用海中データセンター群の建設を目指していると報じられています。これらのポッドは円筒状で、内部は乾燥した窒素などで満たされ、空気循環の代わりに液冷・伝導冷却が採用されています。冷却後の熱は外殻を通じて海水へ放出され、ファンやチラーの稼働を最小限に抑える仕組みです。

この方式により、冷却電力を従来比で最大90%削減できるとされ、エネルギー効率を示す指標であるPUE(Power Usage Effectiveness)も大幅に改善できると見込まれています。

また、騒音が発生せず、陸上の景観や土地利用にも影響を与えないという副次的な利点もあります。

他国・企業での類似事例

Microsoft「Project Natick」(米国)

海中データセンターという概念を実用段階まで検証した最初の大規模プロジェクトは、米Microsoftが2015年から2020年にかけて実施した「Project Natick(プロジェクト・ナティック)」です。

スコットランド沖のオークニー諸島近海で実験が行われ、12ラック・約864台のサーバーを収めた長さ12メートルの金属ポッドを水深35メートルに沈め、2年間にわたり稼働実験が行われました。この実験では、海中環境の安定した温度と低酸素環境がハードウェアの故障率を地上の1/8にまで低減させたと報告されています。また、メンテナンスが不要な完全密閉運用が成立することも確認され、短期的な成果としては極めて成功した例といえます。

ただし、商用化には至らず、Microsoft自身もその後は地上型・液冷型の方に研究重点を移しており、現時点では技術的概念実証(PoC)止まりです。

日本国内での動向

日本でもいくつかの大学・企業が海洋資源活用や温排水利用の観点から同様の研究を進めています。特に九州大学やNTTグループでは、海洋温度差発電海水熱交換技術を応用した省エネルギーデータセンターの可能性を検討しています。

ただし、海中に沈設する実証実験レベルのものはまだ行われておらず、法制度面の整備(海洋利用権、環境影響評価)が課題となっています。

北欧・ノルウェーでの試み

冷却エネルギーの削減という目的では、ノルウェーのGreen Mountain社などが北海の海水を直接冷却に利用する「シーウォーター・クーリング方式」を実用化しています。

これは海中設置ではなく陸上型施設ですが、冷却水を海から直接引き込み、排水を温度管理して戻す構造です。PUEは1.1以下と極めて高効率で、「海の冷却力を利用する」という発想自体は世界的に広がりつつあることがわかります。

中国がこの方式に注目する理由

中国は、地上のデータセンターでは電力・土地・環境規制の制約が強まっている一方で、沿岸部に広大な海域を有しています。

政府が推進する「新型インフラ建設(新基建)」政策の中でも、データセンターのエネルギー転換は重点項目のひとつに挙げられています。

海中設置であれば、

  • 冷却コストを劇的に減らせる
  • 都市部の電力負荷を軽減できる
  • 再生可能エネルギー(洋上風力)との併用が可能 といった利点を得られるため、国家戦略と整合性があるのです。

そのため、この技術は単なる実験的挑戦ではなく、エネルギー・環境・データ政策の交差点として位置づけられています。中国政府が海洋工学とITインフラを融合させようとする動きの象徴ともいえるでしょう。

消費電力削減の仕組み

データセンターにおける電力消費の中で、最も大きな割合を占めるのが「冷却」です。

一般的な地上型データセンターでは、サーバー機器の消費電力のほぼ同等量が冷却設備に使われるといわれており、総電力量の30〜40%前後が空調・冷却に費やされています。この冷却負荷をどれだけ減らせるかが、エネルギー効率の改善と運用コスト削減の鍵となります。海中データセンターは、この冷却部分を自然環境そのものに委ねることで、人工的な冷却装置を最小限に抑えようとする構想です。

冷却においてエネルギーを使うのは、主に「熱を空気や水に移す工程」と「その熱を外部へ放出する工程」です。海中では、周囲の水温が一定かつ低く、さらに水の比熱と熱伝導率が空気よりもはるかに高いため、熱の移動が極めて効率的に行われます。

1. 海水の熱伝導を利用した自然冷却

空気の熱伝導率がおよそ0.025 W/m·Kであるのに対し、海水は約0.6 W/m·Kとおよそ20倍以上の伝熱性能を持っています。そのため、サーバーの発熱を外部へ逃がす際に、空気よりも格段に少ない温度差で効率的な放熱が可能です。

また、深度30〜100メートルの海域は、外気温や日射の影響を受けにくく、年間を通じてほぼ一定の温度を保っています。

この安定した熱環境こそが、冷却制御をシンプルにし、ファンやチラーをほとんど稼働させずに済む理由です。海中データセンターの内部では、サーバーラックから発生する熱を液体冷媒または伝熱プレートを介して外殻部に伝え、外殻が直接海水と接触することで熱を放出します。これにより、冷媒を循環させるポンプや冷却塔の負荷が極めて小さくなります。

結果として、従来の地上型と比べて冷却に必要な電力量を最大で90%削減できると試算されています。

2. PUEの改善と運用コストへの影響

データセンターのエネルギー効率を示す指標として「PUE(Power Usage Effectiveness)」があります。

これは、

PUE = データセンター全体の電力消費量 ÷ IT機器(サーバー等)の電力消費量

で定義され、値が1.0に近いほど効率が高いことを意味します。

一般的な地上型データセンターでは1.4〜1.7程度が標準値ですが、海中データセンターでは1.1前後にまで改善できる可能性があるとされています。

この差は、単なる数値上の効率だけでなく、経済的にも大きな意味を持ちます。冷却機器の稼働が少なければ、設備の維持費・点検費・更新費も削減できます。

また、空調のための空間が不要になることで、サーバー密度を高められるため、同じ筐体容積でより多くの計算処理を行うことができます。

その結果、単位面積あたりの計算効率(computational density)も向上します。

3. 熱の再利用と環境への応用

さらに注目されているのが、海中で発生する「廃熱」の再利用です。

一部の研究機関では、海中ポッドの外殻で温められた海水を、養殖場や海藻栽培の加温に利用する構想も検討されています。北欧ではすでに陸上データセンターの排熱を都市暖房に転用する例がありますが、海中型の場合も地域の海洋産業との共生が模索されています。

ただし、廃熱量の制御や生態系への影響については、今後の実証が必要です。

4. 再生可能エネルギーとの統合

海中データセンターの構想は、エネルギー自給型の閉じたインフラとして設計される傾向があります。

多くの試験事例では、海上または沿岸部に設置した洋上風力発電潮流発電と連携し、データセンターへの給電を行う計画が検討されています。海底ケーブルを通じて給電・通信を行う仕組みは、既存の海底通信ケーブル網と技術的に親和性が高く、設計上も現実的です。再生可能エネルギーとの統合によって、発電から冷却までをすべて自然エネルギーで賄える可能性があり、実質的なカーボンニュートラル・データセンターの実現に近づくと期待されています。

中国がこの方式を国家レベルの実証にまで進めた背景には、単なる冷却効率の追求だけでなく、エネルギー自立と環境対応を同時に進める狙いがあります。

5. 冷却に伴う課題と限界

一方で、海中冷却にはいくつかの技術的な限界も存在します。

まず、熱交換効率が高い反面、放熱量の制御が難しく、局所的な海水温上昇を招くリスクがあります。また、長期間の運用では外殻に生物が付着して熱伝導を妨げる「バイオファウリング」が起こるため、定期的な清掃や薬剤処理が必要になります。これらは冷却効率の低下や外殻腐食につながり、長期安定運用を阻害する要因となります。そのため、現在の海中データセンターはあくまで「冷却効率の実証」と「構造耐久性の検証」が主目的であり、商用化にはなお課題が多いのが実情です。

しかし、もしこれらの問題が克服されれば、従来型データセンターの構造を根本から変える革新的な技術となる可能性があります。

技術的なリスク

海中データセンターは、冷却効率やエネルギー利用の面で非常に魅力的な構想ではありますが、同時に多層的な技術リスクを抱えています。特に「長期間にわたって無人で安定稼働させる」という要件は、既存の陸上データセンターとは根本的に異なる技術課題を伴います。ここでは、主なリスク要因をいくつかの視点から整理します。

1. 腐食と耐久性の問題

最も深刻なリスクの一つが、海水による腐食です。海水は塩化物イオンを多く含むため、金属の酸化を急速に進行させます。

特に、鉄系やアルミ系の素材では孔食(ピッティングコロージョン)やすきま腐食が生じやすく、短期間で構造的な強度が失われる恐れがあります。そのため、外殻には通常、ステンレス鋼(SUS316L)チタン合金、あるいはFRP(繊維強化プラスチック)が使用されます。

また、異なる金属を組み合わせると電位差による電食(ガルバニック腐食)が発生するため、素材選定は非常に慎重を要します。

さらに、電食対策として犠牲陽極(カソード防食)を設けることも一般的ですが、長期間の運用ではこの陽極自体が消耗し、交換が必要になります。

海底での交換作業は容易ではなく、結果的にメンテナンス周期が寿命を左右することになります。

2. シーリングと内部環境制御

海中ポッドは完全密閉構造ですが、長期運用ではシーリング(パッキン)材の劣化も大きな問題です。

圧力差・温度変化・紫外線の影響などにより、ゴムや樹脂製のシールが徐々に硬化・収縮し、微細な水分が内部に侵入する可能性があります。この「マイクロリーク」によって内部の湿度が上昇すると、電子基板の腐食・絶縁破壊・結露といった致命的な障害を引き起こします。

また、内部は気体ではなく乾燥窒素や不活性ガスで満たされていることが多く、万が一漏れが発生するとガス組成が変化して冷却性能や安全性が低下します。

したがって、シーリング劣化の早期検知・圧力変化の監視といった環境モニタリング技術が不可欠です。

3. 外力による構造損傷

海中という環境では、潮流・波浪・圧力変化などの外的要因が常に作用します。

特に、海流による定常的な振動(vortex-induced vibration)や、台風・地震などによる突発的な外力が構造体にストレスを与えます。金属疲労が蓄積すれば、溶接部や接合部に微細な亀裂が生じ、最終的には破損につながる可能性もあります。

また、海底の地形や堆積物の動きによってポッドの傾きや沈下が起こることも想定されます。設置場所が軟弱な海底であれば、スラスト(側圧)や沈降による姿勢変化が通信ケーブルに負荷を与え、断線や信号劣化の原因になるおそれもあります。

4. 生物・環境要因による影響

海中ではバイオファウリング(生物付着)と呼ばれる現象が避けられません。貝、藻、バクテリアなどが外殻表面に付着し、時間の経過とともに層を形成します。

これにより熱伝達効率が低下し、冷却能力が徐々に損なわれます。また、バクテリアによって金属表面に微生物腐食(MIC: Microbiologically Influenced Corrosion)が発生することもあります。

さらに、外殻の振動や電磁放射が一部の海洋生物に影響を与える可能性も指摘されています。特に、音波や電磁場に敏感な魚類・哺乳類への影響は今後の研究課題です。

一方で、海洋生物がケーブルや外殻を物理的に損傷させるリスクも無視できません。過去には海底ケーブルをサメが噛み切る事例も報告されています。

5. 通信・電力ケーブルのリスク

海中データセンターは、電力とデータ通信を海底ケーブルでやり取りします。

しかし、このケーブルは外力や漁業活動によって損傷するリスクが非常に高い部分です。実際、2023年には台湾・紅海・フィリピン周辺で海底ケーブルの断線が相次ぎ、広域通信障害を引き起こしました。多くは底引き網漁船の錨やトロール網による物理的損傷が原因とされています。ケーブルが切断されると、データ通信だけでなく電力供給も途絶します。

特に海中ポッドが複数連結される場合、1系統の断線が全モジュールに波及するリスクがあります。したがって、複数ルートの冗長ケーブルを設けることや、自動フェイルオーバー機構の導入が不可欠です。

6. メンテナンスと復旧の困難さ

最大の課題は、故障発生時の対応の難しさです。

陸上データセンターであれば、障害発生後すぐに技術者が現場で交換作業を行えますが、海中ではそうはいきません。不具合が発生した場合は、まず海上からROV(遠隔操作無人潜水機)を投入して診断し、必要に応じてポッド全体を引き揚げる必要があります。この一連の作業には天候・潮流の影響が大きく、場合によっては数週間の停止を余儀なくされることもあります。

さらに、メンテナンス中の潜水作業には常に人的リスクが伴います。深度が30〜50メートル程度であっても、潮流が速い海域では潜水士の減圧症・機器故障などの事故が起こる可能性があります。

結果として、海中データセンターの運用コストは「冷却コストの削減」と「保守コストの増加」のトレードオフ関係にあるといえます。

7. 冗長性とフェイルセーフ設計の限界

多くの構想では、海中データセンターを無人・遠隔・自律運転とする方針が取られています。

そのため、障害発生時には自動切替や冗長構成によるフェイルオーバーが必須となります。しかし、これらの機構を完全にソフトウェアで実現するには限界があります。たとえば、冷却系や電源系の物理的障害が発生した場合、遠隔制御での回復はほぼ不可能です。

また、長期にわたり閉鎖環境で稼働するため、センサーのキャリブレーションずれ通信遅延による監視精度の低下といった問題も無視できません。

8. 自然災害・地政学的リスク

技術的な問題に加え、自然災害も無視できません。地震や津波が発生した場合、海底構造物は陸上よりも被害の範囲を特定しづらく、復旧も長期化します。

また、南シナ海や台湾海峡といった地政学的に不安定な海域に設置される場合、軍事的緊張・領海侵犯・監視対象化といった政治的リスクも想定されます。特に国際的な海底通信ケーブル網に接続される構造であれば、安全保障上の観点からも注意が必要です。

まとめ ― 技術的完成度はまだ実験段階

これらの要素を総合すると、海中データセンターは現時点で「冷却効率の証明には成功したが、長期安定稼働の実績がない」段階にあります。

腐食・外力・通信・保守など、いずれも地上では経験のない性質のリスクであり、数年単位での実証が不可欠です。言い換えれば、海中データセンターの真価は「どれだけ安全に、どれだけ長く、どれだけ自律的に稼働できるか」で決まるといえます。

この課題を克服できれば、世界のデータセンターの構造を根本から変える可能性を秘めていますが、現段階ではまだ「実験的技術」であるというのが現実的な評価です。

環境・安全保障上の懸念

海中データセンターは、陸上の土地利用や景観への影響を最小限に抑えられるという利点がある一方で、環境影響と地政学的リスクの双方を内包する技術でもあります。

「海を使う」という発想は斬新である反面、そこに人類が踏み込むことの影響範囲は陸上インフラよりも広く、予測が難しいのが実情です。

1. 熱汚染(Thermal Pollution)

最も直接的な環境影響は、冷却後の海水が周囲の水温を上昇させることです。

海中データセンターは冷却効率が高いとはいえ、サーバーから発生する熱エネルギーを最終的には海水に放出します。そのため、長期間稼働すると周辺海域で局所的な温度上昇が起きる可能性があります。

例えば、Microsoftの「Project Natick」では、短期稼働中の周辺温度上昇は数度未満に留まりましたが、より大規模で恒常的な運用を行えば、海洋生態系の構造を変える可能性が否定できません。海中では、わずか1〜2℃の変化でもプランクトンの分布や繁殖速度が変化し、食物連鎖全体に影響することが知られています。特に珊瑚や貝類など、温度変化に敏感な生物群では死亡率の上昇が確認されており、海中データセンターが「人工的な熱源」として作用するリスクは無視できません。

さらに、海流が穏やかな湾内や浅海に設置された場合、熱の滞留によって温水域が形成され、酸素濃度の低下や富栄養化が進行する可能性もあります。

これらの変化は最初は局所的でも、長期的には周囲の海洋環境に累積的な影響を与えかねません。

2. 化学的・物理的汚染のリスク

海中構造物の防食や維持管理には、塗料・コーティング剤・防汚材が使用されます。

これらの一部には有機スズ化合物や銅系化合物など、生態毒性を持つ成分が含まれている場合があります。微量でも長期的に溶出すれば、底生生物やプランクトンへの悪影響が懸念されます。

また、腐食防止のために用いられる犠牲陽極(金属塊)が電解反応で徐々に溶け出すと、金属イオン(アルミニウム・マグネシウム・亜鉛など)が海水中に拡散します。これらは通常の濃度では問題になりませんが、大規模展開時には局地的な化学汚染を引き起こす恐れがあります。

さらに、メンテナンス時に発生する清掃用薬剤・防汚塗料の剥離物が海底に沈降すれば、海洋堆積物の性質を変える可能性もあります。

海中データセンターの「廃棄」フェーズでも、外殻や内部配線材の回収が完全でなければ、マイクロプラスチックや金属粒子の流出が生じる懸念も残ります。

3. 音響・電磁的影響

データセンターでは、冷却系ポンプや電源変換装置、通信モジュールなどが稼働するため、微弱ながらも音響振動(低周波ノイズ)や電磁波(EMI)が発生します。

これらは陸上では問題にならない程度の微小なものですが、海中では音波が長距離を伝わるため、イルカやクジラなど音響に敏感な海洋生物に影響を与える可能性があります。

また、給電・通信を担うケーブルや変圧設備が発する電磁場は、魚類や甲殻類などが持つ磁気感受受容器(magnetoreception)に干渉するおそれがあります。研究段階ではまだ明確な結論は出ていませんが、電磁ノイズによる回遊ルートの変化が観測された事例も存在します。

4. 環境影響評価(EIA)の難しさ

陸上のデータセンターでは、建設前に環境影響評価(EIA: Environmental Impact Assessment)が義務づけられていますが、海中構造物については多くの国で法的枠組みが未整備です。

海域の利用権や排熱・排水の規制は、主に港湾法や漁業法の範囲で定められているため、データセンターのような「電子インフラ構造物」を直接想定していません。特に中国の場合、環境影響評価の制度は整備されつつあるものの、海洋構造物の持続的な熱・化学的影響を評価する指標体系はまだ十分ではありません。

海洋科学的なデータ(潮流・海水温・酸素濃度・生態系モデル)とITインフラ工学の間には、依然として学際的なギャップが存在しています。

5. 領海・排他的経済水域(EEZ)の問題

安全保障の観点から見ると、ポッドが設置される位置とその管理責任が最も重要な論点です。

海中データセンターは原則として自国の領海またはEEZ内に設置されますが、海流や地震による地形変化で位置が移動する可能性があります。万が一ポッドが流出して他国の水域に侵入した場合、それが「商用施設」なのか「国家インフラ」なのかの区別がつかず、国際法上の解釈が曖昧になります。国連海洋法条約(UNCLOS)では、人工島や構造物の設置は許可制ですが、「データセンター」という新しいカテゴリは明示的に規定されていません。そのため、国家間でトラブルが発生した場合、法的な解決手段が確立していないという問題があります。

また、軍事的観点から見れば、海底に高度な情報通信装置が設置されること自体が、潜在的なスパイ活動や監視インフラと誤解される可能性もあります。特に南シナ海や台湾海峡といった地政学的に緊張の高い海域に設置される場合、周辺国との摩擦を生む要因となりかねません。

6. 災害・事故時の国際的対応

地震・津波・台風などの自然災害で海中データセンターが破損した場合、その影響は単一国の問題に留まりません。

漏電・油漏れ・ケーブル断線などが広域の通信インフラに波及する恐れがあり、国際通信網の安全性に影響を及ぼす可能性もあります。現行の国際枠組みでは、事故発生時の責任分担や回収義務を定めたルールが存在しません。

また、仮に沈没や破損が発生した場合、残骸が水産業・航路・海洋調査など他の産業活動に干渉することもあり得ます。

こうした事故リスクに対して、保険制度・国際的な事故報告基準の整備が今後の課題となります。

7. 情報安全保障上の懸念

もう一つの側面として、物理的なアクセス制御とサイバーセキュリティの問題があります。

海中データセンターは遠隔制御で運用されるため、制御系ネットワークが外部から攻撃されれば、電力制御・冷却制御・通信遮断などがすべて同時に起こる危険があります。

また、物理的な監視が困難なため、破壊工作や盗聴などを早期に検知することが難しく、陸上型よりも検知遅延リスクが高いと考えられます。特に国家主導で展開される海中データセンターは、外国政府や企業にとっては「潜在的な通信インフラのブラックボックス」と映りかねず、外交上の摩擦要因にもなり得ます。

したがって、国際的な透明性と情報共有の枠組みを設けることが、安全保障リスクを最小化する鍵となります。

まとめ ― 革新とリスクの境界線

海中データセンターは、エネルギー効率や持続可能性の面で新しい可能性を示す一方、環境と国際秩序という二つの領域にまたがる技術でもあります。

そのため、「どの国の海で」「どのような法制度のもとで」「どの程度の環境影響を許容して」運用するのかという問題は、単なる技術論を超えた社会的・政治的テーマです。冷却効率という数値だけを見れば理想的に思えるこの構想も、実際には海洋生態系の複雑さや国際法の曖昧さと向き合う必要があります。

技術的成果と環境的・地政学的リスクの両立をどう図るかが、海中データセンターが真に「持続可能な技術」となれるかを左右する分岐点といえるでしょう。

有人作業と安全性

海中データセンターという構想は、一般の人々にとって非常に未来的に映ります。

海底でサーバーが稼働し、遠隔で管理されるという発想はSF映画のようであり、「もし内部で作業中に事故が起きたら」といった想像を掻き立てるかもしれません。

しかし実際には、海中データセンターの設計思想は完全無人運用(unmanned operation)を前提としており、人が内部に入って作業することは構造的に不可能です。

1. 完全密閉構造と無人設計

海中データセンターのポッドは、内部に人が立ち入るための空間やライフサポート装置を持っていません。

内部は乾燥窒素や不活性ガスで満たされ、外部との気圧差が大きいため、人間が直接侵入すれば圧壊や酸欠の危険があります。したがって、設置後の運用は完全に遠隔制御で行われ、サーバーの状態監視・電力制御・温度管理などはすべて自動システムに委ねられています。Microsoftの「Project Natick」でも、設置後の2年間、一度も人が内部に入らずに稼働を続けたという記録が残っています。

この事例が示すように、海中データセンターは「人が行けない場所に置く」ことで、逆に信頼性と保全性を高めるという逆説的な設計思想に基づいています。

2. 人が関与するのは「設置」と「引き揚げ」だけ

人間が実際に作業に関わるのは、基本的に設置時と引き揚げ時に限られます。

設置時にはクレーン付きの作業船を用い、ポッドを慎重に吊り下げて所定の位置に沈めます。この際、潜水士が補助的にケーブルの位置確認や固定作業を行う場合もありますが、内部に入ることはありません。引き揚げの際も同様に、潜水士やROV(遠隔操作無人潜水機)がケーブルの取り外しや浮上補助を行います。これらの作業は、浅海域(深度30〜50メートル程度)で行われることが多く、技術的には通常の海洋工事の範囲内です。ただし、海況が悪い場合や潮流が速い場合には危険が伴い、作業中止の判断が求められます。

また、潮流や気象条件によっては作業スケジュールが数日単位で遅延することもあります。

3. 潜水士の安全管理とリスク

設置や撤去時に潜水士が関与する場合、最も注意すべきは減圧症(潜水病)です。

浅海とはいえ、長時間作業を続ければ血中窒素が飽和し、急浮上時に気泡が生じて体内を損傷する可能性があります。このため、作業チームは一般に「交代制」「安全停止」「水面支援(surface supply)」などの手順を厳守します。

また、作業員が巻き込まれるおそれがあるのは、クレーン吊り下げ時や海底アンカー固定時です。数トン単位のポッドが動くため、わずかな揺れやケーブルの張力変化が致命的な事故につながることがあります。

海洋工事分野では、これらのリスクを想定した作業計画書(Dive Safety Plan)の作成が義務づけられており、中国や日本でもISO規格や国家基準(GB/T)に基づく安全管理が求められます。

4. ROV(遠隔操作無人潜水機)の活用

近年では、潜水士に代わってROV(Remotely Operated Vehicle)が作業を行うケースが増えています。

ROVは深度100メートル前後まで潜行でき、カメラとロボットアームを備えており、配線確認・ケーブル接続・表面検査などを高精度に実施できます。これにより、人的リスクをほぼ排除しながらメンテナンスや異常検知が可能になりました。特にハイランダー社の海中データセンター計画では、ROVを使った自動点検システムの導入が検討されています。AI画像解析を用いてポッド外殻の腐食や付着物を検知し、必要に応じて自動洗浄を行うという構想も報じられています。

こうした技術が進めば、完全無人運用の実現性はさらに高まるでしょう。

5. 緊急時対応の難しさ

一方で、海中という環境特性上、緊急時の即応性は非常に低いという課題があります。

もし電源系統や冷却系統で深刻な故障が発生した場合、陸上からの再起動やリセットでは対応できないことがあります。その際にはポッド全体を引き揚げる必要がありますが、海況が悪ければ作業が数日間遅れることもあります。

また、災害時には潜水やROV作業自体が不可能となるため、異常を検知しても即時対応ができないという構造的な制約を抱えています。仮に沈没や転倒が発生した場合、内部データは暗号化されているとはいえ、装置回収が遅れれば情報資産の喪失につながる可能性もあります。

そのため、設計段階から自動シャットダウン機構沈没時のデータ消去機能が組み込まれるケースもあります。

6. 安全規制と法的責任

海中での作業や構造物設置に関しては、各国の労働安全法・港湾法・海洋開発法などが適用されます。

しかし「データセンター」という業種自体が新しいため、法制度が十分に整備されていません。事故が起きた際に「海洋工事事故」として扱うのか、「情報インフラの障害」として扱うのかで、責任主体と補償範囲が変わる点も指摘されています。

また、無人運用を前提とした設備では、保守委託業者・船舶運用会社・通信事業者など複数の関係者が関与するため、事故時の責任分担が不明確になりやすいという問題もあります。特に国際的なプロジェクトでは、どの国の安全基準を採用するかが議論の対象になります。

7. フィクションとの対比 ― 現実の「安全のための無人化」

映画やドラマでは、海底施設に閉じ込められる研究者や作業員といった描写がしばしば登場します。しかし、現実の海中データセンターは「人を入れないことこそ安全である」という発想から設計されています。内部には通路も空間もなく、照明すら設けられていません。内部アクセスができないかわりに、外部の監視・制御・診断を極限まで自動化する方向で技術が発展しています。

したがって、「人が閉じ込められる」という映画的なシナリオは、技術的にも法的にも発生し得ません。むしろ、有人作業を伴うのは設置・撤去時の一時的な海洋作業に限られており、その安全確保こそが実際の運用上の最大の関心事です。

8. まとめ ― 安全性は「無人化」と「遠隔化」に依存

海中データセンターの安全性は、人が入ることを避けることで成立しています。

それは、潜水士を危険な環境に晒さず、メンテナンスを遠隔・自動化によって行うという方向性です。

一方で、完全無人化によって「緊急時の即応性」や「保守の柔軟性」が犠牲になるというトレードオフもあります。今後この分野が本格的に商用化されるためには、人が直接介入しなくても安全を維持できる監視・診断システムの確立が不可欠です。

無人化は安全性を高める手段であると同時に、最も難しい技術課題でもあります。海中データセンターの未来は、「人が行かなくても安全を確保できるか」という一点にかかっているといえるでしょう。

おわりに

海中データセンターは、冷却効率と電力削減という明確な目的のもとに生まれた技術ですが、その意義は単なる省エネの枠を超えています。

データ処理量が爆発的に増える時代において、電力や水資源の制約をどう乗り越えるかは、各国共通の課題となっています。そうした中で、中国が海洋という「未利用の空間」に活路を見いだしたことは、技術的にも戦略的にもきわめて示唆的です。

この構想は、AIやクラウド産業を国家の成長戦略と位置づける中国にとって、インフラの自立とエネルギー効率の両立を目指す試みです。国内の大規模AIモデル開発、クラウドプラットフォーム運営、5G/6Gインフラの拡張といった分野では、膨大な計算資源と電力が不可欠です。

その一方で、環境負荷の高い石炭火力への依存を減らすという政策目標もあり、「海を冷却装置として利用する」という発想は、その二律背反を埋める象徴的な解決策といえるでしょう。

技術革新としての意義

海中データセンターの研究は、冷却効率だけでなく、封止技術・耐腐食設計・自動診断システム・ROV運用といった複数の分野を横断する総合的な技術開発を促しています。

特に、長期間の密閉運用を前提とする点は、宇宙ステーションや極地観測基地などの閉鎖環境工学とも共通しており、今後は完全自律型インフラ(autonomous infrastructure)の実証フィールドとしても注目されています。「人が入らずに保守できるデータセンター」という概念は、陸上施設の無人化やAIによる自己診断技術にも波及するでしょう。

未解決の課題

一方で、現時点の技術的成熟度はまだ「実験段階」にあります。

腐食・バイオファウリング・ケーブル損傷・海流による振動など、陸上では想定しづらいリスクが多く存在します。また、障害発生時の復旧には天候や潮流の影響を受けやすく、運用コストの面でも依然として不確実な要素が残ります。冷却のために得た効率が、保守や回収で相殺されるという懸念も無視できません。

この技術が商用化に至るには、長期安定稼働の実績と、トータルコストの実証が不可欠です。

環境倫理と社会的受容

環境面の課題も避けて通れません。

熱汚染や化学汚染の懸念、電磁波や音響の影響、そして生態系の変化――

これらは数値上の効率だけでは測れない倫理的な問題を内包しています。技術が進歩すればするほど、その「副作用」も複雑化するのが現実です。データセンターが人間社会の神経系として機能するなら、その「血液」としての電力をどこで、どのように供給するのかという問いは、もはや技術者だけの問題ではありません。

また、国際的な法制度や環境影響評価の整備も急務です。海洋という公共空間における技術利用には、国際的な合意と透明性が欠かせません。もし各国が独自に海中インフラを設置し始めれば、資源開発と同様の競争や摩擦が生じる可能性もあります。

この点で、海中データセンターは「次世代インフラ」であると同時に、「新しい国際秩序の試金石」となる存在でもあります。

人と技術の関係性

興味深いのは、このプロジェクトが「人が立ち入らない場所で技術を完結させる」ことを目的としている点です。

安全性を確保するために人の介入を排除し、遠隔制御と自動運用で完結させる構想は、一見すると冷たい機械文明の象徴にも見えます。しかし、見方を変えればそれは、人間を危険から遠ざけ、より安全で持続的な社会を築くための一歩でもあります。

無人化とは「人を排除すること」ではなく、「人を守るために距離を取る技術」でもあるのです。

今後の展望

今後、海中データセンターの実用化が進めば、冷却問題の解決だけでなく、新たな海洋産業の創出につながる可能性があります。

海洋再生エネルギーとの統合、養殖業や温排水利用との共生、さらには災害時のバックアップ拠点としての活用など、応用の幅は広がっています。また、深海観測・通信インフラとの融合によって、地球規模での気候データ収集や地震観測への転用も考えられます。

このように、海中データセンターは単なる情報処理施設ではなく、地球環境と情報社会を結ぶインターフェースとなる可能性を秘めています。

結び

海中データセンターは、現代社会が抱える「デジタルと環境のジレンマ」を象徴する技術です。

それは冷却効率を追い求める挑戦であると同時に、自然との共生を模索する実験でもあります。海の静寂の中に置かれたサーバーポッドは、単なる機械の集合ではなく、人間の知恵と限界の両方を映す鏡と言えるでしょう。この試みが成功するかどうかは、技術そのものよりも、その技術を「どのように扱い」「どのように社会に組み込むか」という姿勢にかかっています。海を新たなデータの居場所とする挑戦は、私たちがこれからの技術と環境の関係をどう設計していくかを問う、時代的な問いでもあります。

海中データセンターが未来の主流になるか、それとも一過性の試みで終わるか――

その答えは、技術だけでなく、社会の成熟に委ねられています。

参考文献

日本が次世代「Zettaスケール」スーパーコンピュータ構築へ──FugakuNEXTプロジェクトの全貌

2025年8月、日本は再び世界のテクノロジー界に衝撃を与える発表を行いました。理化学研究所(RIKEN)、富士通、そして米国のNVIDIAという三者の強力な連携によって、現行スーパーコンピュータ「富岳」の後継となる 次世代スーパーコンピュータ「FugakuNEXT(富岳NEXT)」 の開発が正式に始動したのです。

スーパーコンピュータは、単なる計算機の進化ではなく、国家の科学技術力や産業競争力を象徴する存在です。気候変動の解析や新薬の開発、地震や津波といった自然災害のシミュレーション、さらにはAI研究や材料科学まで、幅広い分野に応用され、その成果は社会全体の安全性や経済成長に直結します。こうした背景から、世界各国は「次世代の計算資源」をめぐって熾烈な競争を繰り広げており、日本が打ち出したFugakuNEXTは、その中でも極めて野心的な計画といえるでしょう。

今回のプロジェクトが注目される理由は、単に処理能力の拡大だけではありません。世界初の「Zettaスケール(10²¹ FLOPS)」に到達することを目標とし、AIと従来型HPCを有機的に融合する「ハイブリッド型アーキテクチャ」を採用する点にあります。これは、従来のスーパーコンピュータが持つ「シミュレーションの強み」と、AIが持つ「データからパターンを学習する力」を統合し、まったく新しい研究アプローチを可能にする挑戦でもあります。

さらに、日本は富岳の運用で得た経験を活かし、性能と同時にエネルギー効率の改善にも重点を置いています。600 exaFLOPSという途方もない計算能力を追求しながらも、消費電力を現行の40メガワット水準に抑える設計は、持続可能な計算基盤のあり方を示す挑戦であり、環境問題に敏感な国際社会からも注目を集めています。

つまり、FugakuNEXTは単なる「富岳の後継機」ではなく、日本が世界に向けて示す「未来の科学・産業の基盤像」そのものなのです。本記事では、このFugakuNEXTプロジェクトの概要、技術的特徴、国際的な意義、そして同世代に登場する海外のスーパーコンピュータとの比較を通じて、その全貌を明らかにしていきます。

FugakuNEXTの概要

FugakuNEXTは、日本が国家戦略として推進する次世代スーパーコンピュータ開発計画です。現行の「富岳」が2020年に世界ランキングで1位を獲得し、日本の計算科学を象徴する存在となったのに続き、その後継として 「世界初のZettaスケールを目指す」 という野心的な目標を掲げています。

プロジェクトの中心となるのは、理化学研究所(RIKEN)計算科学研究センターであり、システム設計は引き続き富士通が担います。そして今回特筆すべきは、米国のNVIDIAが正式に参画する点です。CPUとGPUという異なる計算リソースを融合させることで、従来以上に「AIとHPC(High-Performance Computing)」を両立させる設計が採用されています。

基本情報

  • 稼働予定地:神戸・ポートアイランド(富岳と同じ拠点)
  • 稼働開始予定:2030年前後
  • 開発予算:約1,100億円(7.4億ドル規模)
  • 計算性能目標:600 exaFLOPS(FP8 sparse演算)、実効性能は富岳の100倍規模
  • 消費電力目標:40メガワット以内(現行富岳と同等水準)

特に注目されるのは、性能向上と消費電力抑制の両立です。富岳は約21.2MWの電力を消費して世界最高性能を実現しましたが、FugakuNEXTはそれを大きく超える計算能力を、同水準の電力枠内で達成する設計となっています。これは持続可能な計算資源の実現に向けた大きな挑戦であり、日本が国際的に評価を受ける重要な要素となるでしょう。

富岳からの進化

「富岳」が従来型シミュレーションを中心に性能を発揮したのに対し、FugakuNEXTはAI活用を前提としたアーキテクチャを採用しています。すなわち、AIによる仮説生成・コード自動化と、シミュレーションによる精緻な実証の融合を可能にするシステムです。この融合は「AI for Science」と呼ばれ、次世代の研究手法として世界的に注目を集めています。

また、研究者や産業界が早期にソフトウェアを適応させられるよう、「virtual Fugaku」 と呼ばれるクラウド上の模擬環境が提供される点も特徴です。これにより、本稼働前からアプリケーション開発や最適化が可能となり、2030年の立ち上げ時点で即戦力となるエコシステムが整うことが期待されています。

国家戦略としての位置づけ

FugakuNEXTは単なる研究用の計算資源ではなく、気候変動対策・防災・エネルギー政策・医療・材料科学・AI産業など、日本の社会課題や経済競争力に直結する幅広い分野での利用が想定されています。そのため、文部科学省をはじめとする政府機関の全面的な支援のもと、国を挙げて推進されるプロジェクトとして位置づけられています。

つまり、FugakuNEXTの概要を一言でまとめるなら、「日本が科学・産業・社会基盤の未来を切り開くために投じる最大規模の計算資源」 ということができます。

技術的特徴

FugakuNEXTが世界的に注目される理由は、その計算性能だけではありません。

AIとHPCを融合させるための 革新的なアーキテクチャ設計、持続可能性を意識した 電力効率と冷却技術、そして研究者がすぐに活用できる 包括的ソフトウェアエコシステム によって、従来のスーパーコンピュータの枠を超える挑戦となっています。

ハードウェア構成 ― MONAKA-X CPU と NVIDIA GPU の融合

従来の「富岳」がArmベースの富士通A64FX CPUのみで構成されていたのに対し、FugakuNEXTでは 富士通のMONAKA-X CPUNVIDIA製GPU を組み合わせたハイブリッド構成が採用されます。

  • MONAKA-X CPU:富士通が新たに開発する高性能CPUで、メモリ帯域・並列処理能力を大幅に強化。大規模シミュレーションに最適化されています。
  • NVIDIA GPU:AI計算に特化した演算ユニットを搭載し、FP8やmixed precision演算に強みを発揮。深層学習や生成AIのトレーニングを高速化します。
  • NVLink Fusion:CPUとGPU間を従来以上に高帯域で接続する技術。データ転送のボトルネックを解消し、異種アーキテクチャ間の協調動作を実現します。

この組み合わせにより、物理シミュレーションとAI推論・学習を同一基盤で効率的に動かすことが可能になります。

ネットワークとI/O設計

スーパーコンピュータの性能を支えるのは、単なる計算ノードの集合ではなく、それらをつなぐ 超高速ネットワーク です。FugakuNEXTでは、富岳で培った独自のTofuインターコネクト技術をさらに発展させ、超低レイテンシかつ高帯域の通信基盤を構築します。

また、大規模データを扱うためのI/O性能も強化され、AI学習に必要な膨大なデータを効率的に供給できるストレージアーキテクチャが採用される予定です。

電力効率と冷却技術

FugakuNEXTが目標とする「600 exaFLOPS」という規模は、従来なら数百メガワット規模の電力を必要とすると予想されます。しかし本プロジェクトでは、消費電力を40メガワット以内に抑えることが掲げられています。

  • 高効率電源ユニットや冷却技術(水冷・液冷システム)を採用し、熱効率を最大限に向上。
  • 富岳で実績のある「液浸冷却」をさらに進化させ、安定稼働と環境負荷軽減を両立させることが期待されています。 この点は「環境負荷を最小限にした持続可能な計算資源」として、国際的にも高く評価されるでしょう。

ソフトウェア戦略 ― AIとシミュレーションの融合

ハードウェアに加えて、FugakuNEXTはソフトウェア面でも先進的です。

  • Mixed-precision演算:AI分野で活用されるFP16/FP8演算をHPCに取り込み、効率的な計算を可能にします。
  • Physics-informed neural networks(PINN):物理法則をAIに組み込むことで、従来の数値シミュレーションを補完し、より少ないデータで高精度な予測を実現。
  • AI for Science:AIが仮説生成や実験設計を支援し、シミュレーションでその妥当性を検証するという新しい科学研究モデルを推進。

これらにより、従来は膨大な計算資源を必要とした研究課題に対しても、より短時間かつ低コストで成果を出せる可能性があります。

研究支援基盤 ― virtual Fugaku と Benchpark

FugakuNEXTでは、研究者が本稼働を待たずに開発を始められるよう、「virtual Fugaku」 と呼ばれるクラウド上の模擬環境が提供されます。これにより、2030年の稼働開始時点から多数のアプリケーションが最適化済みとなることを狙っています。

さらに、米国エネルギー省と連携して開発された Benchpark という自動ベンチマーキング環境が導入され、ソフトウェアの性能測定・最適化・CI/CDが継続的に実施されます。これはスーパーコンピュータ分野では革新的な取り組みであり、従来の「一度作って終わり」ではなく、持続的な性能改善の仕組み を確立する点で大きな意義を持ちます。

まとめ

FugakuNEXTの技術的特徴は、単なる「ハードウェアの進化」ではなく、計算機科学とAI、そして持続可能性を統合する総合的な設計にあります。

MONAKA-XとNVIDIA GPUの協調、消費電力40MWの制約、virtual Fugakuの提供など、いずれも「未来の研究・産業の在り方」を見据えた選択であり、この点こそが国際的な注目を集める理由だといえるでしょう。

同世代のスーパーコンピュータとFugakuNEXT

以下は、2030年ごろの稼働を目指す日本のFugakuNEXTプロジェクトと、ヨーロッパ、イギリスなど他国・地域で進行中のスーパーコンピューティングへの取り組みを比較したまとめです。

国/地域プロジェクト名(計画)稼働時期性能/規模主な特徴備考
日本FugakuNEXT(Zettaスケール)約2030年600 exaFLOPS(FP8 sparse)AI‑HPC統合、消費電力40MW以内、MONAKA‑X+NVIDIA GPU、ソフトウェア基盤充実 世界初のZettaスケールを目指す国家プロジェクト
欧州(ドイツ)Jupiter2025年6月 稼働済み約0.79 exaFLOPS(793 petaFLOPS)NVIDIA GH200スーパーチップ多数搭載、モジュラー構成、暖水冷却、省エネ最優秀 現時点で欧州最速、エネルギー効率重視のAI/HPC共用機
欧州(フィンランド)LUMI2022年~稼働中約0.38 exaFLOPS(379 petaFLOPS 実測)AMD系GPU+EPYC、再生可能エネルギー100%、廃熱利用の環境配慮設計 持続可能性を重視した超大規模インフラの先駆け
欧州(イタリア)Leonardo2022年~稼働中約0.25 exaFLOPSNVIDIA Ampere GPU多数、異なるモジュール構成(Booster/CPU/Front-end)、大容量ストレージ 複数モジュールによる柔軟運用とAI/HPC併用設計
イギリス(事業中)Edinburgh Supercomputer(復活計画)/AIRR ネットワーク2025年以降に整備中Exascaleクラス(10^18 FLOPS)予定国家規模で計算資源20倍へ拡張、Isambard-AIなど既設施設含む UKのAI国家戦略の中核、再評価・支援の動きが継続中

注目点

  • FugakuNEXT(日本)は、他国のスーパーコンピュータを上回る 600 exaFLOPS級の性能を目指す最先端プロジェクトで、Zetta‑スケール(1,000 exaFLOPS)の世界初実現に挑戦しています  。
  • ドイツの「Jupiter」はすでに稼働中で 約0.79 exaFLOPS。AIとHPCを両立しつつ、エネルギー効率と環境設計に非常に優れている点が特徴です  。
  • フィンランドの「LUMI」約0.38 exaFLOPSの運用実績をもち、再生エネルギーと廃熱利用など環境配慮設計で注目されています  。
  • イタリアの「Leonardo」約0.25 exaFLOPS。多モジュール構成により、大規模AIとHPCの両用途に柔軟に対応できる構造を採用しています  。
  • イギリスは国策として 計算資源20倍への拡大を掲げ、Isambard‑AIなどを含むスーパーコンピュータ群とのネットワーク構築(AIRR)を含めた強化策を展開中です  。

FugakuNEXTの国際的意義

  1. 性能の圧倒的優位性  FugakuNEXTは600 exaFLOPSを目指し、「Zetta-スケール」に挑む点で、現在稼働中の最先端機をはるかに上回る性能規模です。
  2. 戦略的・統合的設計  AIとHPCを統合するハイブリッドプラットフォーム、さらに省電力や環境配慮に対しても後発設計で対処されている点で、JupiterやLUMIと比肩しつつも独自性があります。
  3. 国際的競争・協調との両立へ  2025年までには欧州における複数のエクサ級スーパーコンピュータが稼働し始め、日本は2030年の本稼働を目指すことで、世界の演算力競争の最前線で存在感を示す構図になります。

今後の展望

FugakuNEXTの稼働は2030年ごろを予定しており、それまでの数年間は開発、検証、そしてソフトウェアエコシステムの整備が段階的に進められます。その歩みの中で注目すべきは、単なるハードウェア開発にとどまらず、日本の科学技術や産業界全体に及ぶ広範な波及効果です。

1. ソフトウェアエコシステムの成熟

スーパーコンピュータは「完成した瞬間がスタートライン」と言われます。

FugakuNEXTも例外ではなく、膨大な計算能力をいかに研究者や企業が使いこなせるかが鍵となります。

  • virtual Fugaku の提供により、研究者は実機稼働前からアプリケーション開発を進められる。
  • Benchpark による継続的な最適化サイクルで、常に最新の性能を引き出せる環境を整備。 これらは「2030年にいきなりフル稼働できる」体制を築くための重要な取り組みとなります。

2. 国際的な競争と協調

FugakuNEXTが稼働する頃には、米国、中国、欧州でも複数の Exascale級スーパーコンピュータ が稼働している見込みです。特に米国の「FRONTIER」やドイツの「Jupiter」、中国が独自開発を進める次世代システムは強力なライバルとなります。

しかし同時に、国際的な協力関係も不可欠です。理研と米国エネルギー省の共同研究に象徴されるように、グローバル規模でのソフトウェア標準化や共同ベンチマーク開発が進めば、各国の計算資源が相互補完的に活用される未来もあり得ます。

3. 技術的課題とリスク

600 exaFLOPSという目標を実現するには、いくつかの技術的ハードルがあります。

  • 電力制約:40MWという制限内で性能を引き出す冷却技術・電源設計が最大の課題。
  • アプリケーション最適化:AIとHPCを統合する新しいプログラミングモデルの普及が不可欠。
  • 部品調達・サプライチェーンリスク:先端半導体やGPUの供給を安定確保できるかどうか。 これらの課題は、FugakuNEXTだけでなく世界中の次世代スーパーコンピュータ開発に共通するものでもあります。

4. 社会・産業への応用可能性

FugakuNEXTは研究用途にとどまらず、社会や産業のさまざまな分野に直接的なインパクトを与えると考えられます。

  • 防災・減災:地震・津波・台風といった災害の予測精度を飛躍的に向上。
  • 気候変動対策:温室効果ガスの影響シミュレーションや新エネルギー開発に活用。
  • 医療・創薬:新薬候補物質のスクリーニングをAIとHPCの融合で効率化。
  • 産業応用:自動車・半導体・素材産業における設計最適化やAI活用に直結。 これらは単に「計算速度が速い」という話ではなく、日本全体のイノベーション基盤を支える役割を果たすでしょう。

5. 日本の戦略的ポジション

FugakuNEXTが計画通り稼働すれば、日本は再びスーパーコンピューティング分野における リーダーシップ を取り戻すことになります。とりわけ「Zettaスケール」の象徴性は、科学技術政策だけでなく外交・経済戦略の観点からも極めて重要です。AI研究のインフラ競争が国家間で激化する中、FugakuNEXTは「日本が国際舞台で存在感を示す切り札」となる可能性があります。

まとめ:未来に向けた挑戦

FugakuNEXTは、2030年の完成を目指す長期プロジェクトですが、その過程は日本にとって大きな技術的・社会的実験でもあります。電力効率と性能の両立、AIとHPCの融合、国際協調と競争のバランス、社会応用の拡大――これらはすべて未来の科学技術のあり方を先取りする挑戦です。

今後数年間の開発と国際的な議論の進展が、FugakuNEXTの成否を決める鍵となるでしょう。

おわりに

FugakuNEXTは、単なる「スーパーコンピュータの後継機」ではありません。それは日本が掲げる 未来社会の基盤構築プロジェクト であり、科学技術力、産業競争力、さらには国際的な存在感を示す象徴的な取り組みです。

まず技術的な側面では、600 exaFLOPS級の演算性能MONAKA-X CPUとNVIDIA GPUのハイブリッド設計、そして 消費電力40MW以内という大胆な制約のもとに設計される点が特徴的です。これは「性能追求」と「環境配慮」という相反する要素を両立させようとする試みであり、持続可能なスーパーコンピューティングの未来像を提示しています。

次に研究手法の観点からは、AIとHPCを融合した「AI for Science」 の推進が挙げられます。従来のシミュレーション中心の科学研究から一歩進み、AIが仮説を生成し、シミュレーションがその妥当性を検証するという新しいアプローチが主流になっていく可能性があります。このシナジーは、医療や創薬、気候変動シミュレーション、災害予測といった社会的に極めて重要な分野に革新をもたらすでしょう。

さらに国際的な文脈においては、FugakuNEXTは単なる国内プロジェクトにとどまらず、米国や欧州、中国といった主要国が進める次世代スーパーコンピュータとの 競争と協調の象徴 でもあります。グローバル規模での研究ネットワークに接続されることで、日本は「科学の島国」ではなく「世界的な計算資源のハブ」としての役割を担うことになるでしょう。

社会的な意義も大きいと言えます。スーパーコンピュータは一般市民に直接見える存在ではありませんが、その成果は日常生活に広く浸透します。天気予報の精度向上、新薬の迅速な開発、安全なインフラ設計、新素材や省エネ技術の誕生――こうしたものはすべてスーパーコンピュータの計算資源によって裏打ちされています。FugakuNEXTの成果は、日本国内のみならず、世界中の人々の生活を支える基盤となるでしょう。

最終的に、FugakuNEXTは「計算速度の競争」に勝つためのものではなく、人類全体が直面する課題に答えを導くための道具です。気候変動、パンデミック、食糧問題、エネルギー危機といったグローバルな課題に立ち向かう上で、これまでにない規模のシミュレーションとAIの力を融合できる基盤は欠かせません。

2030年に稼働するその日、FugakuNEXTは世界初のZettaスケールスーパーコンピュータとして科学技術史に刻まれるとともに、「日本が未来社会にどう向き合うか」を示す強いメッセージとなるはずです。

参考文献

カーボンニュートラル時代のインフラ──日本のグリーンデータセンター市場と世界の規制動向

生成AIやクラウドサービスの急速な普及により、データセンターの存在感は社会インフラそのものといえるほどに高まっています。私たちが日常的に利用するSNS、動画配信、ECサイト、そして企業の基幹システムや行政サービスまで、その多くがデータセンターを基盤として稼働しています。今やデータセンターは「目に見えない電力消費の巨人」とも呼ばれ、電力網や環境への影響が世界的な課題となっています。

特に近年は生成AIの学習や推論処理が膨大な電力を必要とすることから、データセンターの電力需要は一段と増加。国際エネルギー機関(IEA)の試算では、2030年には世界の電力消費の10%近くをデータセンターが占める可能性があるとも言われています。単にサーバを増設するだけでは、環境負荷が増大し、カーボンニュートラルの目標とも逆行しかねません。

このような背景から、「省エネ」「再生可能エネルギーの活用」「効率的な冷却技術」などを組み合わせ、環境負荷を抑えながらデジタル社会を支える仕組みとして注目されているのが グリーンデータセンター です。IMARCグループの最新レポートによると、日本のグリーンデータセンター市場は2024年に約 55.9億ドル、2033年には 233.5億ドル に達する見込みで、2025~2033年の年平均成長率は 17.21% と高水準の成長が予測されています。

本記事では、まず日本における政策や事業者の取り組みを整理し、その後に世界の潮流を振り返りながら、今後の展望について考察します。

グリーンデータセンターとは?

グリーンデータセンターとは、エネルギー効率を最大化しつつ、環境への影響を最小限に抑えた設計・運用を行うデータセンターの総称です。

近年では「持続可能なデータセンター」「低炭素型データセンター」といった表現も使われますが、いずれも共通しているのは「データ処理能力の拡大と環境負荷低減を両立させる」という目的です。

なぜ必要なのか

従来型のデータセンターは、サーバーの電力消費に加えて空調・冷却設備に大量のエネルギーを要するため、膨大なCO₂排出の原因となってきました。さらにAIやIoTの普及により処理能力の需要が爆発的に増加しており、「電力効率の低いデータセンター=社会的なリスク」として扱われつつあります。

そのため、電力効率を示す PUE(Power Usage Effectiveness) や、再生可能エネルギー比率が「グリーン度合い」を測る主要な指標として用いられるようになりました。理想的なPUEは1.0(IT機器以外でエネルギーを消費しない状態)ですが、現実的には 1.2〜1.4 が高効率とされ、日本国内でも「PUE 1.4以下」を目標水準に掲げる動きが一般的です。

代表的な技術・取り組み

グリーンデータセンターを実現するためには、複数のアプローチが組み合わされます。

  • 効率的冷却:外気を利用した空調、地下水や海水を使った冷却、さらに最近注目される液体冷却(Direct Liquid Cooling/浸漬冷却など)。
  • 再生可能エネルギーの利用:太陽光・風力・水力を組み合わせ、可能な限り再エネ由来の電力で運用。
  • 廃熱再利用:サーバーから発生する熱を都市の地域熱供給や農業用温室に活用する取り組みも進む。
  • エネルギーマネジメントシステム:ISO 50001 に代表される国際標準を導入し、電力使用の最適化を継続的に管理。

自己宣言と第三者認証

「グリーンデータセンター」という言葉自体は、公的な認証名ではなく概念的な呼称です。したがって、事業者が「当社のデータセンターはグリーンです」と独自にアピールすることも可能です。

ただし信頼性を担保するために、以下のような第三者認証を併用するのが一般的になりつつあります。

  • LEED(米国発の建築物環境認証)
  • ISO 14001(環境マネジメントシステム)
  • ISO 50001(エネルギーマネジメントシステム)
  • Energy Star(米国環境保護庁の認証制度)

これらを取得することで、「単なる自己宣言」ではなく、客観的にグリーンであると証明できます。

まとめ

つまり、グリーンデータセンターとは 省エネ設計・再エネ利用・効率的冷却・熱再利用 といった総合的な施策を通じて、環境負荷を抑えながらデジタル社会を支える拠点です。公式の認証ではないものの、世界各国で自主的な基準や法的規制が整備されつつあり、今後は「グリーンであること」が新設データセンターの前提条件となる可能性が高まっています。

日本国内の動向

日本国内でも複数の事業者がグリーンデータセンターの実現に向けて積極的な試みを進めています。

  • さくらインターネット(石狩データセンター) 世界最大級の外気冷却方式を採用し、北海道の寒冷な気候を活かして空調電力を大幅に削減。さらに直流送電や、近年では液体冷却(DLC)にも取り組み、GPUなどの高発熱サーバーに対応可能な設計を導入しています。JERAと提携してLNG火力発電所の冷熱やクリーン電力を利用する新センター構想も進めており、環境配慮と高性能化の両立を図っています。
  • NTTコミュニケーションズ 国内最大規模のデータセンター網を持ち、再エネ導入と同時に「Smart Energy Vision」と呼ばれる全社的な環境戦略の一環でPUE改善を推進。都市部データセンターでも水冷や外気冷却を組み合わせ、省エネと安定稼働を両立させています。
  • IIJ(インターネットイニシアティブ) 千葉・白井や島根・松江のデータセンターで先進的な外気冷却を採用。テスラ社の蓄電池「Powerpack」を導入するなど、蓄電技術との組み合わせでピーク電力を削減し、安定した省エネ運用を実現しています。

これらの事例は、地域の気候条件や電力会社との連携を活用しつつ、日本ならではの「省エネと高密度運用の両立」を模索している点が特徴です。

ガバメントクラウドとグリーン要件

2023年、さくらインターネットは国内事業者として初めてガバメントクラウドの提供事業者に認定されました。

この認定は、約300件におよぶ セキュリティや機能要件 を満たすことが条件であり、環境性能は直接の認定基準には含まれていません

しかし、ガバメントクラウドに採択されたことで「国内で持続可能なインフラを提供する責務」が強まったのも事実です。環境性能そのものは条件化されていないものの、政府のカーボンニュートラル政策と並走するかたちで、さくらはDLCや再エネ活用といった施策を強化しており、結果的に「グリーンガバメントクラウド」へ近づきつつあるともいえます。

まとめ

日本国内ではまだ「新設データセンターにグリーン基準を義務化する」といった明確な法規制は存在しません。しかし、

  • 政府の後押し(環境省・経産省)
  • 国内事業者の先進的な省エネ事例
  • ガバメントクラウド認定と政策整合性

といった動きが重なり、結果的に「グリーンであることが競争優位性」へとつながり始めています。今後は、再エネ調達や冷却技術だけでなく、電力消費の透明性やPUE公表の義務化といった新たな政策的要求も出てくる可能性があります。

クラウド大手の取り組み(日本拠点)

日本国内のデータセンター市場においては、外資系クラウド大手である AWS(Amazon Web Services)Google CloudMicrosoft Azure の3社が圧倒的な存在感を示しています。行政や大企業を中心にクラウド移行が加速するなかで、これらの事業者は単にシステム基盤を提供するだけでなく、「環境性能」そのものをサービス価値として前面に打ち出す ようになっています。

それぞれの企業はグローバルで掲げる脱炭素ロードマップを日本にも適用しつつ、国内の電力事情や市場特性に合わせた工夫を取り入れています。

以下では、主要3社の日本におけるグリーンデータセンター戦略を整理します。

AWS(Amazon Web Services)

AWSはグローバルで最も積極的に再生可能エネルギー導入を進めている事業者の一つであり、日本でも例外ではありません。

  • 再エネ調達の拡大 日本国内の再エネ発電設備容量を、2023年の約101MWから2024年には211MWへと倍増させました。これは大規模な太陽光・風力発電所の建設に加え、オフィスや施設の屋根を活用した分散型再エネの調達を組み合わせた成果です。今後もオフサイトPPA(Power Purchase Agreement)などを通じて、さらなる再エネ利用拡大を計画しています。
  • 低炭素型データセンター設計 建材段階から環境負荷を抑える取り組みも進めており、低炭素型コンクリートや高効率建材を導入することで、エンボディドカーボンを最大35%削減。加えて、空調・電力供給の効率化により、運用段階のエネルギー消費を最大46%削減できると試算されています。
  • 環境効果の訴求 AWSは自社のクラウド利用がオンプレミス運用と比べて最大80〜93%のCO₂排出削減効果があると強調しています。これは、単なる省エネだけでなく、利用者企業の脱炭素経営に直結する数値として提示されており、日本企業の「グリーン調達」ニーズに応える強いアピールポイントとなっています。

Google Cloud

Googleは「2030年までにすべてのデータセンターとキャンパスで24時間365日カーボンフリー電力を利用する」という大胆な目標を掲げています。これは単に年間消費電力の総量を再エネで賄うのではなく、常にリアルタイムで再エネ電力を利用するという野心的なロードマップです。

  • 日本での投資 2021年から2024年にかけて、日本に総額約1100億円を投資し、東京・大阪リージョンの拡張を進めています。これにより、AIやビッグデータ需要の高まりに対応すると同時に、再エネ利用や効率的なインフラ整備を進めています。
  • 再エネ調達 Googleは世界各地で再エネ事業者との長期契約を結んでおり、日本でもオフサイトPPAによる風力・太陽光の調達が進行中です。課題は日本の電力市場の柔軟性であり、欧米に比べて地域独占が残る中で、どのように「24/7カーボンフリー」を実現するかが注目されます。
  • AI時代を意識したグリーン戦略 Google CloudはAI向けのGPUクラスタやTPUクラスタを強化していますが、それらは非常に電力を消費します。そのため、冷却効率を最大化する設計や液体冷却技術の導入検証も行っており、「AIインフラ=環境負荷増大」という批判に先手を打つ姿勢を見せています。

Microsoft Azure

Azureを運営するマイクロソフトは「2030年までにカーボンネガティブ(排出量よりも多くのCO₂を除去)」を掲げ、他社より一歩踏み込んだ目標を示しています。

  • 日本での巨額投資 2023〜2027年の5年間で、日本に2.26兆円を投資する計画を発表。AIやクラウド需要の高まりに対応するためのデータセンター拡張に加え、グリーンエネルギー利用や最新の省エネ設計が組み込まれると見られています。
  • カーボンネガティブの実現 マイクロソフトは再エネ導入に加え、カーボンオフセットやCO₂除去技術(DAC=Direct Air Captureなど)への投資も進めています。これにより、日本のデータセンターも「単に排出を減らす」だけでなく「排出を上回る吸収」に貢献するインフラとなることが期待されています。
  • AIと環境負荷の両立 AzureはOpenAI連携などでAI利用が拡大しており、その分データセンターの電力消費も急増中です。そのため、日本でも液体冷却や高効率電源システムの導入が検討されており、「AI時代の持続可能なデータセンター」としてのプレゼンスを確立しようとしています。

まとめ

AWS・Google・Azureの3社はいずれも「脱炭素」を世界的なブランド戦略の一部と位置づけ、日本でも積極的に投資と再エネ導入を進めています。特徴を整理すると:

  • AWS:短期的な実効性(再エネ容量拡大・建材脱炭素)に強み
  • Google:長期的で先進的(24/7カーボンフリー電力)の実現を追求
  • Azure:さらに一歩進んだ「カーボンネガティブ」で差別化

いずれも単なる環境対策にとどまらず、企業顧客の脱炭素ニーズに応える競争力の源泉として「グリーンデータセンター」を打ち出しているのが大きな特徴です。

世界の動向

データセンターの環境負荷低減は、日本だけでなく世界中で重要な政策課題となっています。各国・地域によってアプローチは異なりますが、共通しているのは 「新設時に環境基準を義務化する」「既存センターの効率改善を促す」、そして 「透明性や報告義務を強化する」 という方向性です。

中国

中国は世界最大級のデータセンター市場を抱えており、そのエネルギー需要も膨大です。これに対応するため、政府は「新たなデータセンター開発に関する3年計画(2021–2023)」を策定。

  • 新設データセンターは必ず「4Aレベル以上の低炭素ランク」を満たすことを義務化。
  • PUEについては、原則 1.3以下 を目指すとされており、これは国際的にも高い基準です。
  • また、地域ごとにエネルギー利用制限を設定するなど、電力網の負担軽減も重視しています。

このように、中国では法的に厳格な基準を義務付けるトップダウン型の政策が採られているのが特徴です。

シンガポール

国土が狭く、エネルギー資源が限られているシンガポールは、データセンターの増加が直接的に電力需給や都市環境に影響するため、世界でも最も厳格な基準を導入しています。

  • BCA-IMDA Green Mark for New Data Centre制度を導入し、新規建設時にはPUE 1.3未満WUE(水使用効率)2.0/MWh以下といった基準を必ず満たすことを要求。
  • さらに、Platinum認証を取得することが事実上の前提となっており、建設コストや設計自由度は制限されるものの、長期的な環境負荷低減につながるよう設計されています。

これにより、シンガポールは「グリーンデータセンターを建てなければ新設許可が出ない国」の代表例となっています。

欧州(EU)

EUは環境規制の先進地域として知られ、データセンターに対しても段階的な基準強化が進められています。特に重要なのが Climate Neutral Data Centre Pact(気候中立データセンターパクト)です。

  • 業界団体による自主的な協定ですが、参加事業者には独立監査による検証が課され、未達成であれば脱会措置もあり、実質的に拘束力を持ちます。
  • 2025年までに再エネ比率75%、2030年までに100%を達成。
  • PUEについても、冷涼地域では1.3以下、温暖地域では1.4以下を必須目標と設定。
  • さらに、廃熱の地域利用サーバー部品の再利用率についても基準を設けています。

また、EUの「エネルギー効率指令(EED)」や「EUタクソノミー(持続可能投資の分類基準)」では、データセンターに関するエネルギー消費データの開示義務や、持続可能性を満たす事業への投資優遇が明文化されつつあります。

米国

米国では連邦レベルでの統一規制はまだ整備途上ですが、州ごとに先行的な取り組みが始まっています。

  • カリフォルニア州では、電力網の逼迫を背景に、データセンターに対するエネルギー使用制限や効率基準の導入が議論されています。
  • ニューヨーク州では「AIデータセンター環境影響抑制法案」が提出され、新設時に再エネ利用を義務付けるほか、電力使用量や冷却効率の毎年報告を求める内容となっています。
  • 一方で、米国のクラウド大手(AWS、Google、Microsoft)は、こうした規制を先取りする形で自主的に100%再エネ化やカーボンネガティブの方針を打ち出しており、規制強化をむしろ競争力強化の機会に変えようとしています。

世界全体の潮流

これらの事例を総合すると、世界の方向性は次の3点に集約されます。

  • 新設時の義務化 シンガポールや中国のように「グリーン基準を満たさないと新設できない」仕組みが広がりつつある。
  • 段階的な基準強化 EUのように「2025年までにXX%、2030年までに100%」といった期限付き目標を設定する動きが主流。
  • 透明性と報告義務の強化 米国やEUで進む「エネルギー使用・効率データの開示義務化」により、事業者は環境性能を競争要素として示す必要がある。

まとめ

世界ではすでに「グリーンであること」が競争力の差別化要因から参入条件へと変わりつつあります。

  • 中国やシンガポールのように法的義務化する国
  • EUのように自主協定と規制を組み合わせて強制力を持たせる地域
  • 米国のように州ごとに規制を進め、クラウド大手が先行的に対応する市場

いずれも「段階的に条件を引き上げ、将来的には全データセンターがグリーン化される」方向に動いており、日本にとっても無視できない国際的潮流です。

おわりに

本記事では、日本国内の政策や事業者の取り組み、そして世界各国の規制や潮流を整理しました。ここから見えてくるのは、グリーンデータセンターはもはや“環境意識の高い企業が任意に取り組むオプション”ではなく、持続可能なデジタル社会を実現するための必須条件へと変わりつつあるという現実です。

日本は現状、環境性能をデータセンター新設の法的条件として課してはいません。しかし、環境省・経産省の支援策や、さくらインターネットやIIJ、NTTといった国内事業者の自主的な取り組み、さらにAWS・Google・Azureといった外資大手の投資によって、確実に「グリーン化の流れ」は強まっています。ガバメントクラウドの認定要件には直接的な環境基準は含まれませんが、国のカーボンニュートラル方針と整合させるかたちで、実質的には「環境性能も含めて評価される時代」に近づいています。

一方で、海外と比較すると日本には課題も残ります。シンガポールや中国が新設時に厳格な基準を義務化し、EUが段階的に再エネ比率やPUEの引き上げを制度化しているのに対し、日本はまだ「自主努力に依存」する色合いが強いのが実情です。今後、AIやIoTの拡大により電力需要が爆発的に増すなかで、規制とインセンティブをどう組み合わせて「環境性能の底上げ」を進めていくかが大きな焦点となるでしょう。

同時に、グリーンデータセンターは環境問題の解決にとどまらず、企業の競争力や国際的なプレゼンスにも直結します。大手クラウド事業者は「グリーン」を武器に顧客のESG要求や投資家の圧力に応え、差別化を図っています。日本の事業者も、この流れに追随するだけでなく、寒冷地利用や電力系統の分散、再エネの地産地消といった日本独自の強みを活かした戦略が求められます。

結局のところ、グリーンデータセンターは単なる技術課題ではなく、エネルギー政策・産業競争力・国家戦略が交差する領域です。今後10年、日本が世界の潮流にどう歩調を合わせ、あるいは独自の価値を示していけるかが問われるでしょう。

参考文献

光電融合技術(PEC):未来の高速・省エネコンピューティングへ

近年インターネットやAIの急拡大に伴い、データ通信と処理の高速化・省エネ化が求められています。そこで注目されるのが、光電融合技術(Photonic‑Electronics Convergence, PEC)。これは、電気回路で演算し、光回路で伝送するシームレスな融合技術であり、NTTのIOWN構想を筆頭に世界中で研究・標準化が進んでいます。

🌟 なぜ光電融合が注目されるのか?

私たちが日常的に利用するスマートフォン、動画配信サービス、クラウド、AIアプリケーション──これらすべては背後で膨大なデータ通信と演算処理を必要としています。そして、この情報爆発の時代において、大量のデータを高速・低遅延かつ低消費電力で処理・転送することは極めて重要な課題となっています。

従来の電子回路(エレクトロニクス)では、データ伝送の際に電気信号の抵抗・発熱・ノイズといった物理的限界が付きまとい、特に大規模データセンターでは消費電力や冷却コストの増大が深刻な問題になっています。

以下は、光電融合技術が注目される主要な理由です:

1. 電力消費の大幅削減が可能

データセンターでは、CPUやメモリの演算処理だけでなく、それらをつなぐ配線・インターコネクトの電力消費が非常に大きいとされています。

光信号を使えば、配線における伝送損失が激減し、発熱も抑えられるため、冷却装置の稼働も抑えることができます。

例えば、NTTのIOWN構想では、現在のインターネットと比較して、

  • 消費電力を100分の1に
  • 遅延を1/200に
  • 伝送容量を125倍にする という目標を掲げており、これはまさに光電融合が実現のカギとなる技術です。

2. AI・IoT時代に求められる超低遅延性

リアルタイム性が重要な自動運転、遠隔医療、産業用ロボット、メタバースなどの分野では、数ミリ秒以下の応答時間(レイテンシ)が求められます。

従来の電気信号では、長距離通信や複数のノードを介した接続により遅延や信号の揺らぎが発生してしまいます。

光通信を組み込むことで、信号の遅延を物理的に短縮できるため、リアルタイム応答性が飛躍的に高まります。

特に、光電融合で「チップ内」や「チップ間」の通信まで光化できれば、従来のボトルネックが根本的に解消される可能性があります。

3. 大容量・高帯域化に対応できる唯一の選択肢

AI処理やビッグデータ分析では、1秒あたり数百ギガビット、あるいはテラビットを超えるデータのやり取りが当たり前になります。

こうした爆発的な帯域要求に対し、光通信は非常に広い周波数帯(数百THz)を使えるため、電気では実現できない圧倒的な情報密度での伝送が可能です。

さらに、波長多重(WDM)などの技術を組み合わせれば、1本の光ファイバーで複数の信号を並列伝送することもでき、スケーラビリティの面でも大きな優位性を持っています。

4. チップレット技術・3D集積との相性が良い

近年の半導体開発では、単一の巨大チップを作るのではなく、複数の小さなチップ(チップレット)を組み合わせて高性能を実現するアーキテクチャが主流になりつつあります。

このチップレット間を電気で接続する場合、ボトルネックになりやすいのが通信部分です。

ここに光電融合を適用することで、チップ間の高スループット通信を実現でき、次世代CPUやAIアクセラレータの開発にも重要な役割を果たします。

すでにNVIDIAやライトマターなどの企業がこの領域に本格参入しています。

5. 持続可能なIT社会の実現に向けて

世界中のエネルギー問題、CO₂排出削減目標、そしてESG投資の拡大──これらの観点からも、ITインフラの省電力化は無視できないテーマです。

光電融合は単なる技術進化ではなく、環境と経済の両立を目指す社会的要請にも応える技術なのです。

🧩 PECの4段階ロードマップ(PEC‑1〜PEC‑4)

NTTが提唱するIOWN構想では、光と電気の融合(PEC:Photonic-Electronic Convergence)を段階的に社会実装していくために、4つのフェーズから成る技術ロードマップが描かれています。

このPECロードマップは、単なる回路設計の変更ではなく、情報通信インフラ全体の抜本的な見直しと位置づけられており、2030年代を見据えた長期的な国家・業界レベルの戦略に基づいています。

それぞれのステージで「どのレイヤーを光化するか」が変化していく点に注目してください。

ステージ領域内容予定時期
PEC‑1ネットワークデータセンター間の光通信化(APN商用化)既に実施 
PEC‑2ボード間サーバー/ネットワーク機器間ボード光化~2025年
PEC‑3チップ間チップレット光接続による高速転送2025〜2028年
PEC‑4チップ内CPUコア内の光配線で演算まで光化2028〜2032年+

🔹 PEC‑1:ネットワークレベルの光化(APN)【〜現在】

  • 概要:最初の段階では、データセンター間や都市間通信など、長距離ネットワーク伝送に光技術を導入します。すでに商用化が進んでおり、IOWNの第1フェーズにあたります。
  • 技術的特徴
    • 光ファイバー+光パケット伝送(APN: All-Photonics Network)
    • デジタル信号処理(DSP)付きの光トランシーバー活用
    • WDM(波長分割多重)による1本の線で複数の通信路
  • 利点
    • 帯域幅の拡張
    • 長距離通信における遅延の最小化(特にゲームや金融などに効果)
  • 実績
    • 2021年よりNTTが試験導入を開始し、2023年から企業向けに展開
    • NTTコミュニケーションズのAPNサービスとして一部稼働中

🔹 PEC‑2:ボードレベルの光電融合【2025年ごろ】

  • 概要:2段階目では、サーバーやスイッチ内部のボード同士の接続を光化します。ここでは、距離は数十cm〜数mですが、データ量が爆発的に多くなるため、消費電力と発熱の削減が極めて重要です。
  • 技術的特徴
    • コパッケージド・オプティクス(CPO:Co-Packaged Optics)の導入
    • 光トランシーバとASICを同一基板上に配置
    • 光配線を用いたボード間通信
  • 利点
    • スイッチ機器の消費電力を最大80%削減
    • システム全体の冷却コストを大幅に抑制
    • 通信エラーの減少
  • 主な企業動向
    • NVIDIAがCPO技術搭載のデータセンタースイッチを2025年に発売予定
    • NTTはIOWN 2.0としてPEC‑2の社会実装を計画中

🔹 PEC‑3:チップ間の光化【2025〜2028年】

  • 概要:3段階目では、1つのパッケージ内にある複数のチップ(チップレット)間を光で接続します。これにより、次世代のマルチチップ型CPU、AIプロセッサ、アクセラレータの性能を飛躍的に引き上げることが可能となります。
  • 技術的特徴
    • 光I/Oチップ(光入出力コア)の開発
    • シリコンフォトニクスと高密度配線のハイブリッド設計
    • 超小型のマイクロ光導波路を使用
  • 利点
    • チップレット間通信のボトルネックを解消
    • 高スループットで低レイテンシな並列処理
    • 複雑な3D集積回路の実現が容易に
  • 活用例
    • AIアクセラレータ(例:推論・学習チップ)の高速化
    • 医療画像処理や科学シミュレーションへの応用

🔹 PEC‑4:チップ内の光化【2028〜2032年】

  • 概要:最終フェーズでは、CPUやAIプロセッサの内部配線(コアとコア間、キャッシュ間など)にも光信号を導入します。つまり、演算を行う「脳」そのものが光を使って情報を伝えるようになるという画期的な段階です。
  • 技術的特徴
    • 光論理回路(フォトニックロジック)や光トランジスタの実装
    • チップ内の情報伝達路すべてを光導波路で構成
    • 位相・偏波制御による論理演算の最適化
  • 利点
    • 熱によるスローダウン(サーマルスロットリング)の回避
    • チップ全体の動作速度向上(GHz→THz級へ)
    • システム規模に比例してスケーラブルな性能
  • 研究段階
    • 産総研、NTTデバイス、PETRA、NEDOなどが先行開発中
    • 10年スパンでの実用化が目指されている

🧭 ロードマップ全体を通じた目標

NTTが掲げるIOWNビジョンによれば、これらPECステージを通じて達成されるのは以下のような次世代情報インフラの姿です:

  • 伝送容量:現在比125倍
  • 遅延:現在比1/200
  • 消費電力:現在比1/100
  • スケーラビリティ:1デバイスあたりTbps〜Pbps級の通信

このように、PECの4段階は単なる半導体の進化ではなく、地球規模で持続可能な情報社会へのシフトを可能にする基盤技術なのです。

🏭 各社の取り組み・最新事例

光電融合(PEC)は、NTTをはじめとする日本企業だけでなく、世界中の大手IT企業やスタートアップ、大学・研究機関までもが関わるグローバルな技術競争の最前線にあります。

ここでは、各社がどのようにPECの開発・商用化を進めているか、代表的な動きを紹介します。

✔️ NTTグループ:IOWN構想の中核を担う主導者

  • IOWN(Innovative Optical and Wireless Network)構想のもと、PECの4段階導入を掲げ、APN(All Photonics Network)や光電融合チップの研究開発を推進。
  • NTTイノベーティブデバイス(NID)を設立し、PEC実装をハードウェアレベルで担う。光I/Oコア、シリコンフォトニクスなどで2025年商用化を目指す。
  • 2025年の大阪・関西万博では、IOWN技術を使ったスマート会場体験の提供を計画中。実証フィールドとして世界から注目されている。

🧪 注目技術

  • メンブレン型半導体レーザー
  • 光トランジスタ
  • シリコンフォトニクス+電気LSIのハイブリッドパッケージ

🧪 NVIDIA:次世代データセンターでのCPO導入

  • 高性能GPUのリーダーであるNVIDIAは、光インターコネクトに強い関心を持ち、CPO(Co-Packaged Optics)への取り組みを強化。
  • 2025年に予定されている次世代データセンタースイッチでは、光トランシーバをASICと同一パッケージに搭載することで、従来の電気配線の課題を根本的に解決。
  • メリットは「スイッチポート密度向上」「消費電力抑制」「冷却効率向上」など。光配線技術がGPUクラスタの拡張に直結する。

📊 ビジネス的インパクト

  • HPC/AIクラスタ向けインターコネクト市場を狙う
  • 将来的にはNVIDIA Grace Hopper系統のSoCとも統合可能性

🧪 Lightmatter(米国):AIと光電融合の統合戦略

  • 2017年創業のスタートアップで、光によるAI推論処理チップと光通信を同一パッケージに統合
  • フォトニックプロセッサ「Envise」は、AIモデルの前処理・後処理を電気で、行列演算のコアを光で行うハイブリッド設計。
  • さらに、光スイッチFabric「Passage」も開発しており、チップレット構成における光配線による柔軟な接続構造を提案。

ロードマップ

  • 2025年夏:光AIチップ商用化予定
  • 2026年:3D積層型光電融合モジュールを展開

🧪 Intel:シリコンフォトニクスの量産体制構築

  • 2010年代から光トランシーバや光I/O製品の商用化を行っており、データセンター向けに広く出荷。
  • PEC技術の先進的応用として、チップレット間接続や冷却機構と組み合わせた3D光パッケージの開発にも力を入れている。
  • 大手クラウドベンダー(Hyperscaler)と提携し、100G/400G光I/Oの開発と製造を拡大中。

🔧 実績

  • 100G PSM4モジュール
  • Coherent光トランシーバ(CPO設計)

🧪 産総研(AIST):国内の基礎研究・標準化をリード

  • フォトニクス・エレクトロニクス融合研究センター(PEIRC)を設立。PECに必要な光導波路、光スイッチ、フォトニック集積回路を網羅的に研究。
  • 量産を見据えた高信頼・高密度光実装技術や、光I/Oコアチップなどのコンソーシアムも支援。

🧪 産学連携

  • NEDO、PETRA、大学、民間企業と連携し国際標準策定にも貢献
  • 日本のPECロードマップ立案において中心的役割

📊 その他の主要プレイヤー・動向

  • Broadcom/Cisco:400G/800Gトランシーバを軸にCPOに向けた研究を強化。
  • 中国勢(華為・中興):光I/Oやチップパッケージ特許申請が活発。中国内でのPEC技術独自育成を目指す。
  • EU/IMEC/CEA-Leti:エネルギー効率の高いフォトニックアクセラレータの共同研究プロジェクトが複数進行中。

✔️ まとめ:技術競争と共創の時代へ

光電融合(PEC:Photonic-Electronic Convergence)は、単なる技術革新の1つにとどまらず、今後の情報社会の構造そのものを変革する起爆剤として注目されています。

本記事を通じて紹介したとおり、PECはNTTのIOWN構想をはじめ、NVIDIAやIntel、産総研、Lightmatterといった国内外の主要プレイヤーが、それぞれの強みを生かして段階的な社会実装と技術開発を進めています。

✔️ なぜ今、光電融合なのか?

私たちはいま、「限界を迎えつつある電気回路の時代」から、「光が支える新しい計算・通信インフラ」への転換点に立っています。

スマートフォンやクラウドサービス、生成AIなど、利便性が高まる一方で、それを支えるインフラは電力消費の増大、物理限界、冷却コストの上昇といった深刻な課題に直面しています。

光電融合は、こうした課題を根本から解決する手段であり、しかもそれを段階的に社会へ導入するための技術ロードマップ(PEC-1〜PEC-4)まで明確に描かれています。これは、革新でありながらも「現実的な未来」でもあるのです。

✔️ 技術競争だけでなく「共創」が鍵

世界中のIT企業・半導体メーカー・研究機関が、この領域で激しい競争を繰り広げています。

NVIDIAはデータセンター市場での覇権を視野に入れたCPO技術を、Lightmatterは光演算と通信の一体化によってAI領域の最適解を提示し、Intelは長年の光トランシーバ開発をベースに量産体制を築こうとしています。

一方、NTTや産総研を中心とする日本勢も、独自の強みで世界に挑んでいます。

しかし、光電融合という分野は、電気・光・材料・設計・ソフトウェア・システム工学といった多層的な知識・技術の統合が必要な領域です。

1つの企業・研究機関では完結できないため、いま求められているのは、国境や業界の垣根を超えた「共創」なのです。

✔️ 私たちの未来とどう関係するのか?

PECは一般消費者の目に触れることは少ない技術です。しかし、今後数年のうちに、以下のような変化を私たちは日常の中で体験することになるでしょう:

  • ✔️ 動画の読み込みが瞬時に終わる
  • ✔️ 遠隔医療や遠隔操作がストレスなく利用できる
  • ✔️ AIとの対話が人間と変わらないほど自然になる
  • ✔️ データセンターがより環境にやさしく、電力使用量が削減される

これらはすべて、裏側で動く情報処理・伝送技術が劇的に進化することによって初めて実現できる世界です。

🏁 結びに

光電融合は、単なる“未来の技術”ではありません。すでにPEC-1は現実となり、PEC-2〜4へ向けた準備も着々と進んでいます。

この技術が本格的に普及することで、私たちの社会インフラ、産業構造、ライフスタイルまでもが大きく変化していくことは間違いありません。

これからの数年、どの企業が主導権を握るのか、どの国が標準を制するのか──その動きに注目することは、未来を読み解くうえで非常に重要です。

そして、その未来は意外とすぐそばに迫っているのです。

光と電気が融合する時代──それは、持続可能で豊かな情報社会への第一歩です。

📚 参考文献

モバイルバージョンを終了