英国企業の約3割がAIリスクに“無防備” — 今すぐ取り組むべき理由と最前線の対策

🔍 背景:AI導入の急加速と不可避のリスク

近年、AI技術の発展とともに、企業におけるAIの導入は世界的に加速度的に進んでいます。英国においてもその動きは顕著で、多くの企業がAIを用いた業務効率化や意思決定支援、顧客体験の向上などを目的として、積極的にAIを取り入れています。PwCの試算によれば、AIは2035年までに英国経済に約5500億ポンド(約100兆円)規模の経済効果をもたらすとされており、いまやAI導入は競争力維持のための不可欠な要素となりつつあります。

しかし、その導入のスピードに対して、安全性やガバナンスといった「守り」の整備が追いついていない現状も浮き彫りになっています。CyXcelの調査でも明らかになったように、多くの企業がAIのリスクについて認識してはいるものの、具体的な対策には着手していない、あるいは対応が遅れているという実態があります。

背景には複数の要因が存在します。まず、AI技術そのものの進化が非常に速く、企業のガバナンス体制やサイバーセキュリティ施策が後手に回りやすいという構造的な問題があります。また、AIの利用が一部の部門やプロジェクトから始まり、全社的な戦略やリスク管理の枠組みと連携していないケースも多く見られます。その結果、各現場ではAIを「便利なツール」として活用する一方で、「どうリスクを検知し、制御するか」という視点が抜け落ちてしまうのです。

さらに、英国ではAI規制の法制度が欧州連合に比べてまだ整備途上であることも課題の一つです。EUは2024年に世界初の包括的なAI規制である「AI Act」を採択しましたが、英国は独自路線を模索しており、企業側としては「何が求められるのか」が見えにくい状況にあります。こうした規制の空白地帯により、企業が自発的にAIリスクへの備えを行う責任が一層重くなっています。

このように、AI導入の波は企業活動に多大な可能性をもたらす一方で、その裏側には重大なリスクが潜んでおり、それらは決して「技術者任せ」で済むものではありません。経営層から現場レベルまで、組織全体がAIに伴うリスクを自分ごととして捉え、包括的な対応戦略を構築していく必要があります。


🛠 CyXcel 最新調査:実態は「認識」だが「無策」が多数

AIリスクへの関心が高まりつつある中、英国企業の実態はどうなっているのでしょうか。2025年5月下旬から6月初旬にかけて、サイバー・リーガル・テクノロジー領域の統合リスク支援を手がけるCyXcelが実施した調査によって、AIリスクに対する企業の認識と対応の「深刻なギャップ」が明らかになりました。

この調査では、英国および米国の中堅から大企業を対象に、それぞれ200社ずつ、合計400社を対象にアンケートが行われました。その結果、30%の英国企業がAIを経営上の「トップ3リスク」として認識していると回答。これは、AIリスクの存在が経営層の課題として顕在化していることを示すものです。にもかかわらず、実際の対応が追いついていないという事実が浮き彫りとなりました。

具体的には、全体の29%の企業が、ようやく「初めてAIリスク戦略を策定した段階」にとどまり、31%の企業は「AIに関するガバナンスポリシーが未整備」であると回答しました。さらに悪いことに、調査では18%の企業がデータポイズニングのようなAI特有のサイバー攻撃にまったく備えていないことも明らかになっています。16%はdeepfakeやデジタルクローンによる攻撃への対策を一切講じていないと答えており、これは企業ブランドや顧客信頼を直撃するリスクを放置している状態といえます。

CyXcelの製品責任者であるメーガ・クマール氏は、調査結果を受けて次のように警鐘を鳴らしています:

“企業はAIを使いたがっているが、多くの企業ではガバナンスプロセスやポリシーが整っておらず、その利用に対して不安を抱いている。”

この言葉は、AI導入の勢いに対して「どう使うか」ではなく「どう守るか」の議論が後回しにされている現状を端的に表しています。

さらに注目すべきは、こうした傾向は英国に限らず米国でも同様に見られたという点です。米国企業においても、20%以上がAIリスク戦略の未策定、約19%がdeepfake対策を未実施という結果が出ており、英米共通の課題として「認識はあるが無策である」という構図が浮かび上がっています。

このギャップは単なるリソース不足の問題ではなく、企業文化や経営姿勢そのものの問題でもあります。AIのリスクを「IT部門の問題」として限定的に捉えている限り、全社的な対応体制は整いません。また、リスクが表面化したときには既に取り返しのつかない状況に陥っている可能性もあるのです。

このように、CyXcelの調査は、AIリスクへの対応が今なお“意識レベル”にとどまり、組織的な行動には結びついていないという実態を強く示しています。企業がAIを安全かつ持続可能に活用するためには、「使う前に守る」「活用と同時に制御する」意識改革が不可欠です。


💥 AIリスクに関する具体的影響と広がる脅威

AI技術の発展は、私たちのビジネスや社会にかつてない革新をもたらしています。しかし、その一方で、AIが悪用された場合の脅威も現実のものとなってきました。CyXcelの調査は、企業の防御がいかに脆弱であるかを浮き彫りにしています。

とくに注目すべきは、AIを狙ったサイバー攻撃の多様化と巧妙化です。たとえば「データポイズニング(Data Poisoning)」と呼ばれる攻撃手法では、AIが学習するデータセットに悪意ある情報を混入させ、意図的に誤った判断をさせるよう仕向けることができます。これにより、セキュリティシステムが本来なら検知すべき脅威を見逃したり、不正確なレコメンデーションを提示したりするリスクが生じます。CyXcelの調査によると、英国企業の約18%がこのような攻撃に対して何の対策も講じていない状況です。

さらに深刻なのが、ディープフェイク(Deepfake)やデジタルクローン技術の悪用です。生成AIにより、人物の顔や声をリアルに模倣することが可能になった現在、偽の経営者の映像や音声を使った詐欺が急増しています。実際、海外ではCEOの音声を複製した詐欺電話によって、多額の資金が騙し取られたケースも報告されています。CyXcelによれば、英国企業の16%がこうした脅威に「まったく備えていない」とのことです。

これらのリスクは単なる技術的な問題ではなく、経営判断の信頼性、顧客との信頼関係、ブランド価値そのものを揺るがす問題です。たとえば、AIによって処理される顧客情報が外部から操作されたり、生成AIを悪用したフェイク情報がSNSで拡散されたりすることで、企業の評判は一瞬で損なわれてしまいます。

加えて、IoTやスマートファクトリーといった「物理世界とつながるAI」の活用が広がる中で、AIシステムの誤作動が現実世界のインフラ障害や事故につながる可能性も否定できません。攻撃者がAIを通じて建物の空調システムや電力制御に干渉すれば、その影響はもはやITに留まらないのです。

このように、AIを取り巻くリスクは「目に見えない情報空間」から「実社会」へと急速に広がっています。企業にとっては、AIを使うこと自体が新たな攻撃対象になるという現実を直視し、技術的・組織的な対策を講じることが急務となっています。


🛡 CyXcelの提案:DRM(Digital Risk Management)プラットフォーム

CyXcelは、AI時代における新たなリスクに立ち向かうための解決策として、独自に開発したDigital Risk Management(DRM)プラットフォームを2025年6月に正式リリースしました。このプラットフォームは、AIリスクを含むあらゆるデジタルリスクに対して、包括的かつ実用的な可視化と対処の手段を提供することを目的としています。

CyXcelのDRMは、単なるリスクレポートツールではありません。サイバーセキュリティ、法的ガバナンス、技術的監査、戦略的意思決定支援など、企業がAIやデジタル技術を活用する上で直面する複雑な課題を、“一つの統合されたフレームワーク”として扱える点が最大の特徴です。

具体的には、以下のような機能・構成要素が備わっています:

  • 190種類以上のリスクタイプを対象とした監視機能 例:AIガバナンス、サイバー攻撃、規制遵守、サプライチェーンの脆弱性、ジオポリティカルリスクなど
  • リアルタイムのリスク可視化ダッシュボード 発生確率・影響度に基づくリスクマップ表示により、経営層も即座に判断可能
  • 地域別の規制対応テンプレート 英国、EU、米国など異なる法域に対応したAIポリシー雛形を提供
  • インシデント発生時の対応支援 法務・セキュリティ・広報対応まで一気通貫で支援する人的ネットワークを内包

このDRMは、ツール単体で完結するものではなく、CyXcelの専門家ネットワークによる継続的な伴走型支援を前提としています。つまり、「導入して終わり」ではなく、「使いながら育てる」ことを重視しているのです。これにより、自社の業種・規模・リスク体制に即したカスタマイズが可能であり、大企業だけでなく中堅企業にも対応できる柔軟性を持っています。

製品責任者のメーガ・クマール氏は、このプラットフォームについて次のように述べています:

「企業はAIの恩恵を享受したいと考えていますが、多くの場合、その利用におけるリスク管理やガバナンス体制が未整備であることに不安を抱いています。DRMはそのギャップを埋めるための現実的なアプローチです。」

また、CEOのエドワード・ルイス氏も「AIリスクはもはやIT部門に閉じた問題ではなく、法務・経営・技術が一体となって取り組むべき経営課題である」と語っています。

このように、CyXcelのDRMは、企業がAIを“安全かつ責任を持って活用するためのインフラ”として位置づけられており、今後のAI規制強化や社会的責任の高まりにも対応可能な、先進的なプラットフォームとなっています。

今後、AIリスクへの注目が一層高まる中で、CyXcelのDRMのようなソリューションが企業の“防衛ライン”として広く普及していくことは、もはや時間の問題と言えるでしょう。


🚀 実践的ガイド:企業が今すぐ始めるべきステップ

ステップ内容
1. ギャップ分析AIリスク戦略・ガバナンス体制の有無を整理
2. ガバナンス構築三層防衛体制(法務・技術・経営)と規定整備
3. 技術強化データチェック、deepfake検知、モデル監査
4. 継続モニタリング定期レビュー・訓練・DRMツール導入
5. 組織文化への浸透全社教育・責任体制の明確化・インセンティブ導入

⚖️ スキル・規制・国家レベルの動き

AIリスクへの対処は、企業単体の努力にとどまらず、人材育成・法制度・国家戦略といったマクロな取り組みと連動してこそ効果を発揮します。実際、英国を含む多くの先進国では、AIの恩恵を享受しながらも、そのリスクを抑えるための制度設計と教育投資が進められつつあります。

まず注目すべきは、AI活用人材に対するスキルギャップの深刻化です。国際的IT専門家団体であるISACAが2025年に実施した調査によると、英国を含む欧州企業のうち83%がすでに生成AIを導入済みまたは導入を検討中であると回答しています。しかしその一方で、約31%の企業がAIに関する正式なポリシーを整備していないと答えており、またdeepfakeやAIによる情報操作リスクに備えて投資を行っている企業は18%にとどまるという結果が出ています。

これはつまり、多くの企業が「技術は使っているが、それを安全に運用するための知識・仕組み・人材が追いついていない」という構造的課題を抱えていることを意味します。生成AIの利便性に惹かれて現場導入が先行する一方で、倫理的・法的リスクの認識やリスク回避のためのスキル教育が疎かになっている実態が、これらの数字から浮かび上がってきます。

このような背景を受け、英国政府も対応を本格化させつつあります。2024年には「AI Opportunities Action Plan(AI機会行動計画)」を策定し、AIの活用を国家の経済戦略の中核に据えるとともに、規制の整備、透明性の確保、倫理的AIの推進、スキル育成の加速といった4つの柱で国家レベルの取り組みを推進しています。特に注目されているのが、AIガバナンスに関する業界ガイドラインの整備や、リスクベースの規制アプローチの導入です。EUが先行して制定した「AI Act」に影響を受けつつも、英国独自の柔軟な枠組みを目指している点が特徴です。

さらに教育機関や研究機関においても、AIリスクに関する教育や研究が活発化しています。大学のビジネススクールや法学部では、「AI倫理」「AIと責任あるイノベーション」「AIガバナンスと企業リスク」といった講義が続々と開設されており、今後の人材供給の基盤が少しずつ整いつつある状況です。また、政府主導の助成金やスキル再訓練プログラム(reskilling programme)も複数走っており、既存の労働人口をAI時代に適応させるための準備が進んでいます。

一方で、現場レベルではこうした制度やリソースの存在が十分に活用されていないという課題も残ります。制度があっても情報が届かない、専門家が社内にいない、あるいは予算の都合で導入できないといった声も多く、国家レベルの取り組みと企業の実態には依然として乖離があります。このギャップを埋めるためには、官民連携のさらなる強化、特に中小企業への支援拡充やベストプラクティスの共有が求められるでしょう。

結局のところ、AIリスクへの対応は「技術」「制度」「人材」の三位一体で進めていくほかありません。国家が整えた制度と社会的基盤の上に、企業が主体的にリスクを管理する文化を育み、現場に浸透させる。そのプロセスを通じて初めて、AIを持続可能な形で活用できる未来が拓けていくのです。


🎯 最後に:機会とリスクは表裏一体

AIは今や、単なる技術革新の象徴ではなく、企業活動そのものを根本から変革する“経営の中核”となりつつあります。業務効率化やコスト削減、顧客体験の向上、新たな市場の開拓──そのポテンシャルは計り知れません。しかし、今回CyXcelの調査が明らかにしたように、その急速な普及に対して、リスク管理体制の整備は著しく遅れているのが現状です。

英国企業の約3割が、AIを自社にとって重大なリスクと認識しているにもかかわらず、具体的な対応策を講じている企業はごくわずか。AIをめぐるリスク──たとえばデータポイズニングやディープフェイク詐欺といった攻撃手法は、従来のセキュリティ対策では対応が難しいものばかりです。にもかかわらず、依然として「方針なし」「対策未着手」のままAIを導入・活用し続ける企業が多いという実態は、将来的に深刻な事態を招く可能性すら孕んでいます。

ここで重要なのは、「AIリスク=AIの危険性」ではない、という視点です。リスクとは、本質的に“可能性”であり、それをどう管理し、どう制御するかによって初めて「安全な活用」へと転じます。つまり、リスクは排除すべきものではなく、理解し、向き合い、管理するべき対象なのです。

CyXcelが提供するようなDRMプラットフォームは、まさにその“リスクと共に生きる”ための手段のひとつです。加えて、国家レベルでの制度整備やスキル育成、そして社内文化としてのリスク意識の醸成。これらが一体となって初めて、企業はAIの恩恵を最大限に享受しつつ、同時にその脅威から自らを守ることができます。

これからの時代、問われるのは「AIを使えるかどうか」ではなく、「AIを安全に使いこなせるかどうか」です。そしてそれは、経営者・技術者・法務・現場すべての人々が、共通の言語と意識でAIとリスクに向き合うことによって初めて実現されます。

AIの導入が加速するいまこそ、立ち止まって「備え」を見直すタイミングです。「便利だから使う」のではなく、「リスクを理解した上で、責任を持って活用する」──そのスタンスこそが、これからの企業にとって最も重要な競争力となるでしょう。

📚 参考文献

AI時代の詐欺の最前線──見破れない嘘と私たちが取るべき行動

2020年代後半に入り、生成AI技術は目覚ましい進歩を遂げ、便利なツールとして私たちの生活に急速に浸透してきました。しかしその一方で、この技術が悪用されるケースも増加しています。特に深刻なのが、AIを利用した詐欺行為です。この記事では、AIを悪用した詐欺の代表的な手口、なぜこうした詐欺が急増しているのか、そして企業と個人がどう対応すべきかを具体的に解説します。

私たちはこれまで、詐欺といえば「文面の日本語が不自然」「電話の声に違和感がある」など、いわば“違和感”によって真偽を見抜くことができていました。しかしAI詐欺は、そうした人間の直感すらも欺くレベルに達しています。「これは本物に違いない」と感じさせる精度の高さが、かえって判断力を鈍らせるのです。

AIを使った詐欺の主な手口とその実態

AI詐欺の代表的な手法は以下のようなものがあります。

音声ディープフェイク詐欺

AIによって特定の人物の声を模倣し、電話やボイスメッセージで本人になりすます詐欺です。企業の経理担当者などに対し、上司の声で「至急この口座に振り込んでくれ」と指示するケースがあります。海外では、CEOの声を真似た音声通話によって数億円が詐取された事件も報告されています。

映像ディープフェイク詐欺

Zoomなどのビデオ通話ツールで、偽の映像と音声を使って本人になりすます手法です。顔の動きやまばたきもリアルタイムで再現され、画面越しでは見抜けないほど自然です。香港では、企業の財務責任者が役員になりすました映像に騙され、数十億円を送金したという事例があります。

SNSやメッセージアプリでのなりすまし詐欺

有名人の顔や文章を模倣してSNSアカウントを作成し、ファンに対して投資話や寄付を持ちかける詐欺も増えています。また、チャットボットが本人らしい語り口で会話するなど、騙されるハードルが低くなっています。

AI生成レビュー・広告詐欺

AIが生成した偽レビューや商品広告を使って、詐欺的なECサイトに誘導するケースもあります。本物らしい写真や文章で商品を紹介し、偽の購入者の声まで自動生成することで信頼感を演出します。

なぜAI詐欺は増えているのか

AI詐欺が急増している背景には、いくつかの技術的・社会的要因があります。

まず、AIモデルの性能向上があります。たとえば音声合成やテキスト生成は、数分間の録音や数十件の投稿だけで特定の人物を精度高く模倣できるようになりました。また、オープンソースのAIツールやクラウドベースの生成APIが普及し、専門知識がなくても簡単にディープフェイクが作れるようになっています。

さらに、SNSや動画プラットフォームの拡散力も拍車をかけています。人々は「一番乗りで情報をシェアしたい」「注目を集めたい」という承認欲求から、情報の真偽を確かめずに拡散しやすくなっています。この環境下では、AIで作られたコンテンツが本物として瞬く間に信じられてしまいます。

こうした拡散衝動は、ときに善意と正義感から生まれます。「これは詐欺に違いない」と思って注意喚起のために共有した情報が、実は偽情報であったということも珍しくありません。つまり、AI詐欺は人々の承認欲求や正義感すらも利用して拡がっていくのです。

AI詐欺に対抗するための具体的な対策(企業と個人)

企業が取るべき技術的な対策

  1. 二要素認証(2FA)の導入:メール、社内ツール、クラウドサービスには物理キーや認証アプリによる2FAを徹底します。
  2. ドメイン認証(DMARC、SPF、DKIM)の設定:なりすましメールの送信を技術的にブロックするために、メールサーバー側の認証設定を整備します。
  3. AIディープフェイク検出ツールの導入:音声や映像の不正検出を行うAIツールを導入し、重要な会議や通話にはリアルタイム監視を検討します。
  4. 社内情報のAI入力制限:従業員がChatGPTなどに社内情報を入力することを制限し、ポリシーを明確化して漏洩リスクを最小化します。

企業が持つべきマインドセットと運用

  1. 重要な指示には別経路での確認をルール化:上司からの急な指示には、別の通信手段(内線、Slackなど)で裏を取る文化を定着させます。
  2. 「感情に訴える依頼は疑う」意識を徹底:緊急性や秘密厳守を強調された指示は、詐欺の典型です。冷静な判断を求める教育が不可欠です。
  3. 失敗を責めない報告文化の醸成:誤送金やミスの発生時に即報告できるよう、責めない風土を作ることがダメージを最小化します。

個人が取るべき技術的な対策

  1. SNSの公開範囲制限:顔写真や声、行動履歴などが詐欺素材にならないよう、投稿範囲を限定し、プライバシー設定を強化します。
  2. 不審な通話やメッセージへの応答回避:知らない番号からの通話には出ない、個人情報を聞き出す相手とは会話しないようにします。
  3. パスワード管理と2FAの併用:強力なパスワードを生成・管理するためにパスワードマネージャーを活用し、2FAと併用して乗っ取りを防止します。

個人が持つべきマインドセット

  1. 「本人に見えても本人とは限らない」という前提で行動:映像や声がリアルでも、信じ込まずに常に疑いの目を持つことが重要です。
  2. 急かされても一呼吸おく習慣を:詐欺師は焦らせて思考力を奪おうとします。「即決しない」を心がけることが有効です。
  3. 感情を利用した詐欺に注意:怒りや感動を煽るメッセージほど冷静に。心理操作に乗せられないために、客観視する力が必要です。

対策しきれないAI詐欺の代表的な手法

どれだけ技術的・心理的対策を行っても、完全に防ぎきれない詐欺も存在します。特に以下のようなケースはリスクが非常に高いです。

高度な音声ディープフェイクによる“本人のふり”

❌ 防ぎきれない理由:

  • 声の再現が非常にリアルで、本人でも一瞬見分けがつかないケースあり
  • 電話やボイスメッセージでは「表情」「振る舞い」など補足情報が得られず、確認困難
  • 特に“上司”や“親族”を装う緊急性の高い依頼は、心理的に確認プロセスをすっ飛ばされやすい

✅ 限界的に対処する手段:

  • 「合言葉」や「業務プロトコル」で裏取り
  • 電話では即応せず、別経路(SMS/Slack/対面)で“必ず”再確認する訓練

本人になりすました動画会議(映像+音声のdeepfake)

❌ 防ぎきれない理由:

  • Zoomなどのビデオ会議で、「顔」+「声」+「自然な瞬きやジェスチャー」が再現されてしまう
  • リアルタイム生成が可能になっており、事前に見抜くのは極めて困難
  • 画質が悪いと違和感を感じにくく、背景もそれっぽく加工されていれば判断不能

✅ 限界的に対処する手段:

  • あらかじめ「Zoomでの業務命令は無効」などのルールを組織で決めておく
  • 不自然な振る舞い(瞬きがない、目線が合わない、背景がぼやけすぎなど)を訓練で学ぶ

本人の文体を完全に模倣したメール詐欺

❌ 防ぎきれない理由:

  • 社内メールや過去のSNSポストなどからAIが“その人っぽい文体”を再現可能
  • 表現や改行、署名の癖すら真似されるため、違和感で気づくのがほぼ不可能
  • メールドメインも巧妙に類似したもの(typosquatting)を使われると見分け困難

✅ 限界的に対処する手段:

  • DMARC/SPF/DKIMによる厳格なドメイン認証
  • 「重要な指示はSlackまたは電話で再確認」の徹底

ターゲティングされたロマンス詐欺・リクルート詐欺

❌ 防ぎきれない理由:

  • SNSの投稿・所属企業・興味分野などをAIが収集・分析し、極めて自然なアプローチを仕掛ける
  • 会話も自動でパーソナライズされ、違和感が出にくい
  • 数週間~数か月かけて信頼を築くため、「疑う理由がない」状態が生まれる

✅ 限界的に対処する手段:

  • 新しい接触に対しては「オンラインであっても信用しすぎない」というマインドの徹底
  • 少しでも「金銭の話」が出た時点で危険と判断

ファクトチェックの重要性

SNS時代の最大の課題の一つが、事実確認(ファクトチェック)を飛ばして情報を拡散してしまうことです。AIが作った偽情報は、真に迫るがゆえに本物と見分けがつかず、善意の人々がその拡散に加担してしまいます。

特に「これは詐欺だ」「これは本物だ」「感動した」など、強い感情を引き起こす情報ほど慎重に扱うべきです。出典の確認、複数情報源での照合、一次情報の追跡など、地味で時間のかかる作業が、情報災害から身を守る最も有効な手段です。

まとめ

AI技術は私たちの生活を豊かにする一方で、その進化は新たな脅威ももたらします。詐欺行為はAIによってますます巧妙かつ見分けがつきにくくなり、もはや「違和感」で見抜ける時代ではありません。技術的な対策とマインドセットの両輪で、企業も個人もリスクを最小限に抑える努力が求められています。

大切なのは、”本人に見えるから信じる”のではなく、”本人かどうか確認できるか”で判断することです。そして、どんなに急いでいても一呼吸置く冷静さと、出典を確認する習慣が、AI詐欺から自分と周囲を守る鍵となります。

参考文献

モバイルバージョンを終了