Windows 11 KB5063878アップデートとSSD障害報告 ― PCDIY!検証とPhisonの真相解明

2025年夏、Windows 11 の大型アップデートを適用した一部ユーザーから「SSDが突然認識されなくなった」「ドライブが壊れてデータが消失した」といった深刻な報告が相次ぎました。特に KB5063878 や KB5062660 といった更新プログラムの適用後に発生するという証言が重なったことで、コミュニティやメディアでは「Windows Update が SSD を破壊しているのではないか」という疑念が一気に広がりました。

SNS や海外フォーラムでは、システムディスクが RAW 化して起動できなくなった例や、大容量ファイルをコピー中にエラーが発生してSSDが消失したといった体験談も共有され、不安を持つユーザーが増加。バックアップを呼びかける声や、アップデートの適用を控える動きも見られました。

一方で、マイクロソフトやSSDメーカー側は「現時点でアップデートと物理的故障の因果関係は確認されていない」と説明し、真相は不明のままでした。こうした中で注目されたのが、台湾のハードウェアレビューサイト PCDIY! による独自検証です。Facebookグループで公開された実測結果は、疑惑の背景を理解するうえで重要な手がかりとなりました。

本記事では、このPCDIY!の検証内容を整理し、現在判明している事実と、依然として残る疑問点について解説します。

PCDIY!の実測内容

台湾のハードウェアレビューサイト PCDIY! は、Windows 11 のアップデート後にSSDが破損したという報告を受け、実際に自らのテスト環境で大規模なストレージ検証を行いました。テストでは 「100GB〜1TBの超大容量ファイルを繰り返し書き込み続ける」という高負荷シナリオ を設定し、一般的なベンチマークソフトでは見えにくい長時間連続書き込み性能や安定性を確認しました。

その結果、以下の現象が確認されました。

  • Corsair Force Series MP600 2TB コントローラ:Phison PS5016-E16-32 → テスト中に突然認識不能となり、完全に動作不能。PCからドライブが消失し、再起動しても認識されない状態に陥った。
  • Silicon Power US70 2TB コントローラ:Phison PS5016-E16-32 → Corsairと同様に動作不能。ファイル転送途中でエラーが発生し、そのままアクセス不能になった。
  • Apacer AS2280F4 2TB コントローラ:Phison PS5026-E26-52 → ドライブが壊れることはなかったが、連続使用を続けると速度が大きく低下。特に空き容量が減った状態では「越用越慢(使うほど遅くなる)」現象が顕著に表れ、転送速度が当初の半分以下にまで落ち込んだ。

テストは、AMD Ryzen 9 9950X3D を搭載した AM5 プラットフォームIntel Core Ultra 285K を搭載した LGA1851 プラットフォーム の双方で行われ、いずれも最新の Windows 11 24H2 環境+問題となっている更新プログラムを適用済み という条件で実施されています。

さらに、PCDIY!はハイエンドの冷却装置や安定した電源を備えた環境を整え、ハードウェア的なボトルネックや電源不足といった要因を排除したうえで検証しており、環境依存ではなくソフトウェアやファームウェアに起因する問題を浮き彫りにする意図がありました。

これらの検証結果により、当初は「Windows 11 の更新が SSD を直接破壊したのではないか」という強い疑念が浮上しました。しかしその後の調査で、実際に破損したSSDが エンジニア向けの未完成ファームウェアを搭載していた ことが明らかになり、問題の構図が大きく変わることになりました。

Phisonによる現地調査

PCDIY!の報告を受けて、SSDコントローラメーカーである Phison(群聯電子) は非常に迅速に対応しました。問題が発覚した直後、Phisonは4名のエンジニアを台湾のPCDIY!テストラボに派遣し、実際に現場で同じ条件下での再現実験を行いました。メーカー自らがレビュー現場に足を運ぶのは異例であり、それだけ事態を重く見ていたことが分かります。

Phisonのエンジニアは、PCDIY!が使用したのと同型のSSDを持ち込み、同一環境下で徹底的な検証を開始しました。条件は以下の通りです。

  • テスト環境
    • AMD Ryzen 9 9950X3D 搭載の最新 AM5 プラットフォーム
    • Intel Core Ultra 285K 搭載の最新 LGA1851 プラットフォーム
    • 最新の Windows 11 24H2 環境に、問題とされた更新プログラム(KB5063878 / KB5062660)を適用済み
  • テスト内容
    • 100GB〜1TBの大容量ファイルを連続して書き込み
    • SSDに高い負荷をかけ続け、認識エラーや性能低下が再現するかどうかを確認

数時間にわたる集中的なストレステストが行われましたが、Phisonが持ち込んだドライブでは 一度も破損やクラッシュは発生せず、速度低下も見られませんでした。つまり、同じモデル名・同じ条件のSSDであっても、PCDIY!が経験した「SSDが完全に認識不能になる」という現象は再現できなかったのです。

この時点で、Phisonは「問題はOSや更新プログラムだけに起因するものではなく、個別のドライブに依存する可能性が高い」と判断しました。特に、PCDIY!の環境で実際に破損したSSDはすでにOSから認識されなくなっており、簡易な診断ツールでもアクセス不能な状態でした。そのため、Phisonはこれらのドライブを回収し、本社の研究所で詳細なファームウェア解析とメモリセルレベルの診断を行うことを決定しました。

さらに、Phisonは自社ラボで既に 累計4,500時間以上、2,200回以上のテストサイクル を実施しており、その中で同様の異常は一度も確認されていませんでした。つまり「大規模な社内検証では問題は見つからなかったのに、PCDIY!の個体では深刻な障害が発生した」という事実が浮き彫りになったわけです。

こうした調査の過程を経て、最終的に「破損したSSDがエンジニア向けの未完成ファームウェアを搭載していた」という真相が突き止められることになります。

真相の判明 ― エンジニア版ファームウェア

PhisonとPCDIY!による共同調査の結果、問題の核心がようやく明らかになりました。PCDIY!で破損や異常が発生した Corsair Force Series MP600 および Silicon Power US70 のSSDは、いずれも市販されている通常製品ではなく、エンジニアリングサンプル(Engineering Sample、略してES版) と呼ばれる試作段階の個体だったのです。

ES版SSDは、メーカーがファームウェアの完成前にパートナーやレビューサイトに提供するもので、最終的な製品版とは異なります。正式リリース前のため、ファームウェアの安定性が十分に保証されておらず、エラー処理や例外動作に不具合が残っている可能性が高いのが特徴です。本来であれば量産前の検証や内部テストのために使われるもので、一般消費者が購入することはまずありません。

今回のケースでは、このES版SSDに未完成のファームウェアが搭載されていたため、Windows 11の更新による高負荷書き込み条件下で障害が顕在化しました。Phisonの正式版ファームウェアでは4,500時間以上の耐久テストを経て問題が確認されていないことから、根本原因はWindows Updateではなく、試作版ファームウェアに存在した不具合であることが確定的となりました。

この発見によって「Windows 11のアップデートがSSDを破壊する」という当初の疑念は大きく後退しました。むしろ、PCDIY!の検証は、製品として市場に流通する前のハードウェア・ファームウェアが持つリスクを浮き彫りにしたと言えます。

一方で、この結論は新たな論点も提起しました。

  • 本来一般市場には出回らないはずのエンジニア版SSDが、なぜPCDIY!のテスト環境に存在したのか。
  • 仮にレビュー用として提供されたものであれば理解できますが、万が一、流通経路の混乱や管理の不備によって ES版ファームウェア搭載SSDが市販品に紛れ込むリスクは本当にゼロなのか

Phisonや各SSDベンダーは「リテール版では正式版ファームウェアが搭載されており、消費者が入手する製品は安全である」と説明しています。しかし、ユーザーからすれば「自分の購入したSSDが確実に正式版ファームウェアを搭載しているのか」という懸念は残ります。今回の件は、OSやアップデートだけではなく、ハードウェア供給プロセスの透明性や品質管理の重要性を再認識させる事例となりました。

Apacer SSDの速度低下について

PCDIY!の検証で注目されたもう一つの事例が、Apacer AS2280F4 2TB(Phison PS5026-E26-52搭載) で確認された「越用越慢(使うほど遅くなる)」現象です。このSSDはCorsairやSilicon Powerのように突然故障することはありませんでしたが、連続して大容量ファイルを書き込み続けると速度が顕著に低下し、一定の使用時間を超えると当初の転送速度を維持できなくなりました。

この現象の背景には、現代のSSD設計に共通する複数の仕組みがあります。

  1. SLCキャッシュ 多くのTLC/QLCベースのSSDは、一部のセルをSLCモード(1セル1ビット)として運用し、書き込み速度を一時的に高速化しています。しかし、キャッシュ領域が使い切られると、本来のTLC/QLC速度に落ち込み、書き込みが大幅に遅くなります。
  2. Over-Provisioning (OP) SSD内部に確保された予備領域で、書き換え負荷を分散させる仕組みです。空き領域が十分にある場合は性能を維持できますが、ドライブ使用率が50%を超え、OP領域が逼迫するとガベージコレクションの負荷が増し、速度が低下します。
  3. Garbage Collection(GC)と書き換え特性 SSDは上書きができないため、一度データを書いたセルを消去してから再利用します。この「消去+書き直し」処理が頻繁になると、連続書き込み時に速度が顕著に落ちます。特に大容量ファイルを扱う場合、空きブロックの再利用効率が下がり、性能低下が発生しやすくなります。

PCDIY!のテストでは、100GB〜1TB規模の大容量データを連続書き込みするという極端なシナリオを採用しており、この状況ではSLCキャッシュがすぐに枯渇し、さらにOP領域やGCの負担が増大するため、速度低下が如実に現れました。これはApacer製品に限らず、ほとんどのコンシューマー向けSSDが抱える特性です。

さらに重要なのは、通常のWindowsフォーマットではこの速度低下を解消できないという点です。フォーマットは論理的なファイルシステムを初期化するに過ぎず、SSD内部のキャッシュ状態や未使用ブロックの整理までは行いません。そのため、速度低下を根本的に解決するには、以下のような専用手段が必要です。

  • SSDメーカーが提供する 「Secure Erase(完全消去)」ツール を使用する。
  • 一部のマザーボード(ASUSやASRockなど)に搭載されている BIOSレベルのSSD消去機能 を利用する。

これらの方法を用いることで、セルの状態がリフレッシュされ、SSDの転送速度を初期状態に近い水準へ回復させることが可能です。

したがって、Apacer AS2280F4で確認された速度低下は製品の欠陥ではなく、SSDが本来的に持つ設計上の制約が高負荷テストで顕在化したに過ぎません。日常的な使用シナリオ(OSやアプリの起動、通常のファイル操作)ではほとんど問題にならず、実利用で大きな支障が出るケースは限定的と考えられます。

おわりに

今回のPCDIY!の実測とPhisonの現地調査によって、当初広まっていた「Windows 11 のアップデートがSSDを直接破壊する」という強い疑念は大きく後退しました。実際には、PCDIY!のテスト環境に存在していた エンジニアリングサンプル版ファームウェア が原因であり、市販されている正式版SSDでは再現されないことが確認されています。つまり、一般ユーザーが購入したSSDで同じように突然クラッシュして消失するリスクはきわめて低いといえます。

しかし、今回の騒動は単なる「技術的な誤解の解消」で終わる話ではありません。むしろ、いくつかの重要な疑問を新たに突きつけています。

  • 市場流通の透明性 本来は一般流通しないはずのエンジニアリングサンプル版SSDが、一般ユーザーの環境に存在していたのはなぜか。メーカーからレビュワーへ提供されたものであれば説明はつきますが、それでも「未完成ファームウェアが動作するSSD」が実際に利用可能な状態にあったこと自体が、サプライチェーンの管理体制に不安を残します。
  • 消費者が確認できない不透明性 ユーザーが手元のSSDにどのバージョンのファームウェアが搭載されているかを明確に判断するのは容易ではありません。メーカーが「市販品はすべて正式版」と説明しても、実際にその保証をエンドユーザーが独自に検証する手段は乏しいのが現状です。
  • 再発の可能性 今回のケースはファームウェアに起因するものでしたが、OSアップデートとハードウェアの相性が思わぬトラブルを引き起こす可能性は常に存在します。特に高負荷・大容量転送など、日常利用では再現しにくい条件下で問題が潜むこともあり、ユーザーの不安は完全には払拭できません。

まとめると、今回の「SSD破壊騒動」は、表面的には「エンジニア版ファームウェアが原因」として決着を見たように見えます。しかし、裏を返せば、ハードウェアメーカーとソフトウェアベンダーの間の情報共有や品質管理がどこまで徹底されているのか、そして市場に流れる製品が本当にすべて安全なのかという、より大きな問題を私たちに突き付けたともいえるでしょう。

消費者にとって最も重要なのは、自分が入手した製品が確実に正式版であるという「安心感」です。その保証が揺らぐ限り、不安は完全には解消されません。今回の件は一つの答えに到達したように見えて、実際にはまだ多くの問いを残しており、この問題はまだ終わっていないのです。

参考文献

Windows 11 セキュリティ更新「KB5063878」「KB5062660」で報告された SSD 不具合 ― Microsoft と Phison は再現できず

2025年8月に配信された Windows 11 の月例セキュリティ更新プログラム(KB5063878、KB5062660)を適用した一部のユーザーから、SSD が突然認識されなくなる、あるいはドライブが消失するという深刻な不具合が報告されました。特に大容量ファイルを扱う作業や高負荷のワークロードで発生しやすいとされ、ユーザーの間で大きな不安を呼んでいます。

今回の問題が注目を集めたのは、単なる一部環境の不具合報告にとどまらず、テスト結果や動画を含む具体的な検証報告がインターネット上に拡散されたためです。中には、SSD が再起不能になりデータが失われたケースも報告されており、利用者にとっては単なる「一時的な不具合」では済まない深刻さを帯びています。

この件に関しては、SSD コントローラを手掛ける Phison 社の製品で発生しやすいという指摘もありましたが、Microsoft および Phison 双方が大規模な検証を行った結果、現時点では不具合を再現できていないと発表しています。それでもユーザー報告が散発的に続いているため、事象の発生条件や影響範囲は依然として不透明なままです。

本記事では、これまでの経緯と公式発表を整理するとともに、現時点で取り得る対応策、さらに今後の大型アップデート(25H2)適用時に懸念される二次的なリスクについても解説します。

不具合の報告

今回の不具合は、Windows 11 の 2025 年 8 月配信セキュリティ更新(KB5063878、KB5062660)を適用した後、一部のユーザー環境で SSD が突然認識されなくなったり、ドライブ自体が OS から消えてしまうという現象として報告されました。特に 大容量ファイル(50GB 以上)を転送する際や、ドライブ容量の 6 割以上を使用している状況で発生する可能性が高いとされ、利用環境によっては再起動後もドライブが戻らず、データが失われたというケースもありました。

海外のフォーラムやテストユーザーからは、詳細な検証報告が相次ぎました。あるテストでは 21 台の SSD を対象に負荷テストを実施したところ、そのうち 12 台で一時的にドライブが認識されなくなる現象が確認され、さらに Western Digital SA510 2TB モデルでは再起不能となる深刻な障害が発生したと報告されています。こうした事例は、単発的なハードウェア故障ではなく、更新プログラムとの関連性が疑われる根拠となりました。

特に注目されたのは、Phison 製 NAND コントローラを搭載した SSD で不具合が発生しやすいとされた点です。これにより、Phison のコントローラに依存する幅広い SSD 製品に潜在的な影響が及ぶ可能性が指摘され、利用者や業界関係者の間で警戒が高まりました。

一方で、報告事例の中には SSD や HDD の消失が「一時的」であり、再起動後に正常に認識されたケースも含まれていました。このため、事象がすべてハードウェアの物理的故障につながるわけではなく、ソフトウェア的な要因や特定条件下での挙動が関与している可能性も排除できません。

こうした状況から、当初は「セキュリティ更新による SSD の文鎮化」というセンセーショナルな見出しが拡散しましたが、その後の調査で再現性が確認できないことが判明しつつあり、依然として 発生条件や影響範囲が明確でない状態が続いています。

Microsoft と Phison の対応

不具合報告が広がった後、Microsoft は状況を把握し、調査を開始したことを公表しました。ただし同社の社内検証では、ユーザーが報告したような SSD の消失や破損は確認できていないと説明しています。これは、問題が非常に特定の条件下でのみ発生するか、あるいは別要因が絡んでいる可能性を示しています。Microsoft は引き続きユーザーからの情報収集を続けており、現時点では「既知の問題」として公式ドキュメントに掲載する段階には至っていません。

一方、SSD コントローラ大手の Phison も即座に独自の調査を行い、徹底的な再現テストを実施しました。その規模は累計 4,500 時間以上、2,200 回を超えるテストサイクルに及び、負荷の大きいワークロードや大容量ファイル転送など、ユーザーから報告のあった条件を中心に重点的に検証が行われました。しかし、最終的に いずれのテストでも不具合を再現できなかったと結論づけられています。

Phison は加えて、インターネット上で拡散した「内部文書」が偽造である可能性を指摘し、風評被害を避けるために法的措置を検討していると発表しました。この文書は「Phison が不具合を認識しつつ隠蔽している」と受け取られる内容を含んでいましたが、同社はこれを強く否定し、公式に調査結果を公開することで透明性を確保しようとしています。

さらに Phison はユーザー向けの推奨事項として、高負荷時にはヒートシンクやサーマルパッドを用いた冷却対策を行うことを挙げました。これにより SSD の安定性を高め、今回の問題が仮に環境依存の熱要因と関係していた場合の予防策になる可能性があります。

総じて、Microsoft と Phison の両社は「現時点では再現できない」という立場を共有しており、ユーザー報告とのギャップが存在する状態です。両社とも引き続き調査を継続するとしているものの、再現不能である以上、原因特定や恒久的な修正には時間を要する見通しです。

現時点での対処方法

現状、Microsoft と Phison の双方が数千時間規模のテストを行ったにもかかわらず再現に至っていないため、根本的な原因は特定されていません。そのため、ユーザー側が取れる確実な対応は非常に限られています。

まず考えられるのは、問題が発生した場合に該当する更新プログラム(KB5063878、KB5062660)をアンインストールすることです。これは Windows Update の「更新履歴」から削除操作を行うことで対応可能です。ただし、この方法はシステムを既知の脆弱性にさらすことになり、セキュリティリスクが増大するという副作用があります。そのため、無条件にアンインストールするのではなく、実際に不具合が発生している環境に限定して適用するのが現実的です。

また、アンインストール後は Windows Update が自動的に再適用を試みる可能性があるため、更新プログラムの一時停止やグループポリシーによる制御を併用することが推奨されます。特に企業環境や検証中のシステムでは、問題が未解決のまま再適用されることで業務に支障が出るリスクがあるため、運用レベルでの制御が重要となります。

不具合が発生していない環境については、むやみにパッチを削除するのではなく、データバックアップを確実に取ることが最も有効な予防策となります。システムイメージや重要データのバックアップを定期的に取得しておけば、万一の障害発生時でも復旧の可能性を高めることができます。特に SSD が完全に認識されなくなるケースが報告されているため、データ保護の観点では通常以上にバックアップの重要性が増しています。

さらに、Phison が推奨しているように、SSD の冷却対策を強化することもリスク低減につながります。ヒートシンクやサーマルパッドを導入し、長時間の大容量処理時に温度が過度に上昇しないようにしておくことは、環境依存的な発生要因を排除する助けとなります。

まとめると、現時点での有効な対処は以下の通りです。

  1. 不具合が実際に発生した場合のみ当該パッチをアンインストールする。
  2. アンインストール後は自動再適用を防ぐために更新を一時停止する。
  3. 定期的なデータバックアップを徹底し、万一の障害に備える。
  4. SSD の温度管理を強化し、冷却対策を講じる。

今後の懸念 ― 二次災害リスク

今回の不具合については、Microsoft と Phison がともに「再現できない」と結論づけているため、公式に修正プログラムが提供される見通しは現時点では立っていません。しかし、Windows Update の仕組みを考慮すると、問題が完全に解消されないまま将来の累積更新や機能更新に統合される可能性が高く、ユーザーはその影響を受けざるを得ない状況に直面する恐れがあります。特に 2025 年秋に提供が予定されている Windows 11 25H2 では、今回の KB5063878 および KB5062660 が含まれることが想定されるため、以下のような「二次災害」的リスクが懸念されます。

1. 個別アンインストールが不可能になるリスク

累積型アップデートや機能更新に統合された場合、特定の更新プログラムだけを切り離して削除することはできません。つまり、25H2 に含まれる形で提供された場合には、ユーザーが選択的に当該パッチを外すことはできず、問題が残存したままシステムを利用せざるを得ない可能性があります。

2. 機能更新インストール中の障害

もし SSD 消失問題が環境依存的に存在する場合、25H2 のインストール作業そのものがリスクとなります。大容量のファイル書き込みを伴う更新処理中に SSD が認識不能になれば、インストールが失敗しロールバックされる、あるいはシステムが起動不能に陥る危険性があります。この場合、通常の「更新失敗」よりも影響が大きく、システム復旧が困難になる二次被害につながる恐れがあります。

3. 利用継続リスクと業務影響

企業や組織環境では、セキュリティ要件から最新の更新を適用せざるを得ないケースが多く存在します。そのため、仮に問題が未解決でも 25H2 を導入することが半ば強制され、結果として 安定性よりもセキュリティを優先せざるを得ない状況が発生する可能性があります。このジレンマは、業務システムや重要データを扱う環境で深刻なリスクとなり得ます。

4. アップデート拒否による脆弱性曝露

逆に、不具合を恐れて 25H2 の導入を見送る選択をした場合、セキュリティ更新を長期間適用できないことになります。これにより既知の脆弱性に対してシステムが無防備となり、攻撃リスクが増大します。つまり、「適用して壊れるリスク」と「適用しないで攻撃されるリスク」の板挟みになることが予想されます。

まとめ

今回の Windows 11 セキュリティ更新プログラムに関する SSD 不具合は、ユーザーから複数の報告が上がった一方で、Microsoft と Phison のいずれも大規模なテストで再現できなかったという点が特徴的です。つまり、確かに現象は一部環境で確認されているものの、その発生条件が極めて限定的である可能性が高く、広範なユーザーに共通して影響するタイプの不具合とは断定できない状況にあります。

現時点でユーザーが取れる対策は、不具合が発生した場合に該当パッチをアンインストールすることに限定されます。ただし、これはセキュリティリスクを増大させる副作用を伴うため、問題が実際に発生している環境に絞って適用すべき手段です。それ以外の環境では、定期的なバックアップや SSD の冷却対策といった予防策を優先することが現実的です。

一方で、将来的にリリースされる Windows 11 25H2 への統合が見込まれることから、今回の問題は「解決されないまま累積更新に取り込まれる」可能性を否定できません。その場合、ユーザーはパッチを個別に外すことができず、環境によってはインストール中に障害が発生する、あるいはシステムを安定的に利用できなくなるといった二次災害的リスクを負うことになります。逆に更新を避ければ、脆弱性に曝されるリスクが高まるため、利用者は難しい判断を迫られることになります。

総じて、今回の不具合は「再現できない=安全」という単純な構図では片付けられません。むしろ、再現性の低さゆえに原因特定が難しく、発生した場合の影響が非常に大きいという点に注意すべきです。25H2 の適用を控える前後では、システム全体のバックアップを確実に取得し、既知の問題リストや公式の追加情報を確認した上で導入を判断する姿勢が求められます。

参考文献

モバイルバージョンを終了