6Gはどこまで来ているのか──次世代通信の研究最前線と各国の動向

6G時代の幕開け──次世代通信の姿とその最前線

はじめに

2020年代も半ばに差し掛かる今、次世代の通信インフラとして注目されているのが「6G(第6世代移動通信)」です。5Gがようやく社会実装され始めた中で、なぜすでに次の世代が注目されているのでしょうか?この記事では、6Gの基本仕様から、各国・企業の取り組み、そして6Gに至る中間ステップである5.5G(5G-Advanced)まで解説します。

6Gとは何か?

6Gとは、2030年前後の商用化が期待されている次世代の無線通信規格です。5Gが掲げていた「高速・大容量」「低遅延」「多数同時接続」といった特徴をさらに拡張し、人間とマシン、物理空間とサイバースペースをより密接に接続することを目指しています。

6Gで目指されている性能は、次のようなものです:

  • 通信速度:最大1Tbps(理論値)
  • 遅延:1ミリ秒以下、理想的には1マイクロ秒台
  • 接続密度:1平方キロメートルあたり1000万台以上の機器
  • 信頼性:99.99999%以上
  • エネルギー効率:10〜100倍の改善

こうした性能が実現されれば、単なるスマートフォンの進化にとどまらず、医療、製造業、教育、エンタメ、交通など、あらゆる分野に革命的変化をもたらします。

通信規格の進化比較

以下に、3Gから6Gまでの進化の概要を比較した表を掲載します。

世代主な特徴最大通信速度(理論値)遅延主な用途
3G音声とデータの統合通信数Mbps数百ms携帯ブラウジング、メール
4G高速データ通信、IPベース数百Mbps〜1Gbps10〜50ms動画視聴、VoIP、SNS
4.5GLTE-Advanced、MIMOの強化1〜3Gbps10ms以下高解像度動画、VoLTE
5G超高速・低遅延・多接続最大20Gbps1ms自動運転、IoT、AR/VR
6Gサブテラヘルツ通信、AI統合最大1Tbps0.1〜1μs仮想現実、遠隔医療、空中ネットワーク

各国・各社の取り組み

6Gはまだ規格化前の段階にあるとはいえ、世界中の企業や政府機関がすでに研究と実証を進めています。

日本:ドコモ、NTT、NEC、富士通

日本ではNTTとNTTドコモ、NEC、富士通などが中心となって、100〜300GHz帯のサブテラヘルツ領域での実証実験を進めています。2024年には100Gbpsを超える通信を100mの距離で成功させるなど、世界でも先進的な成果が出ています。

また、ドコモは海外キャリア(SKテレコム、AT&T、Telefonica)やベンダー(Nokia、Keysight)とも連携し、グローバル標準化を見据えた実証に取り組んでいます。

米国・欧州:Nokia、Ericsson、Qualcomm

NokiaはBell Labsを中心に、AIネイティブなネットワークアーキテクチャとサブテラヘルツ通信の研究を進めています。米ダラスでは7GHz帯の基地局実験をFCCの承認を得て展開しています。

EricssonはAI-RAN Allianceにも参加し、AIによる基地局制御の最適化やネットワークの消費電力削減に注力しています。

Qualcommは6G対応チップの開発ロードマップを発表しており、スマートフォン向けに限らず、IoT・自動運転・XR(拡張現実)などあらゆる領域を視野に入れています。

韓国・中国:Samsung、Huawei、ZTE

Samsungは韓国国内で、140GHz帯を用いたビームフォーミングの実証を進めており、6G研究センターも設立済みです。

Huaweiは政治的な制約を抱えつつも、6G関連技術の論文や特許の数では世界トップクラス。中国政府も国家戦略として6G研究を推進しており、すでに実験衛星を打ち上げています。

5.5G(5G-Advanced):6Gへの橋渡し

5.5Gとは、3GPP Release 18〜19で規定される「5Gの進化形」であり、6Gに至る前の中間ステップとされています。Huaweiがこの名称を積極的に使用しており、欧米では”5G-Advanced”という呼び名が一般的です。

特徴

  • 通信速度:下り10Gbps、上り1Gbps
  • 接続密度:1平方kmあたり数百万台規模
  • 遅延:1ms以下
  • Passive IoTへの対応(安価なタグ型通信機器)
  • ネットワークAIによる最適化

なぜ5.5Gが必要か

5Gは標準化はされているものの、国や地域によって展開の度合いに差があり、ミリ波や超低遅延といった機能は実用化が進んでいない部分もあります。5.5Gはこうした未達成領域をカバーし、真の5G性能を提供することを目的としています。

また、5.5Gは次世代のユースケース──自動運転の高精度化、インダストリー4.0、メタバース通信、XR技術の普及──を支えるための実践的な基盤にもなります。

まとめと今後の展望

6Gは単なる通信速度の高速化ではなく、現実空間と仮想空間を融合し、AIと共に動作する次世代の社会インフラです。ドローンの群制御、遠隔外科手術、クラウドロボティクス、空中ネットワーク(HAPSや衛星)、そして通信とセンシングが統合された世界──こうした未来が実現するには、まだ多くの研究と実験が必要です。

その橋渡しとして、5.5Gの実装と普及が極めて重要です。Release 18/19の標準化とともに、2025年〜2028年にかけて5.5Gが本格導入され、その後の2030年前後に6Gが商用化される──というのが現実的なロードマップです。

日本企業はNEC・富士通・NTT系を中心に研究で存在感を示していますが、今後はチップセットやアプリケーションレイヤーでも世界市場を狙う戦略が求められるでしょう。

用語解説

  • 6G(第6世代移動通信):2030年ごろ商用化が期待される次世代通信規格。超高速・超低遅延・高信頼性が特徴。
  • 5G-Advanced(5.5G):5Gの中間進化版で、6Gの前段階に当たる通信規格。速度や接続性能、AI対応などが強化されている。
  • サブテラヘルツ通信:100GHz〜1THzの高周波帯域を使う通信技術。6Gの主要技術とされる。
  • ミリ波:30GHz〜300GHzの周波数帯。5Gでも使われるが6Gではより高い周波数が想定されている。
  • Passive IoT:自身で電源を持たず、外部からの信号で動作する通信機器。非常に低コストで大量導入が可能。
  • ビームフォーミング:電波を特定方向に集中的に送信・受信する技術。高周波帯での通信品質を高める。
  • ネットワークAI:通信ネットワークの構成・制御・運用をAIが最適化する技術。
  • AI-RAN Alliance:AIと無線ネットワーク(RAN)の統合を進める国際アライアンス。MicrosoftやNvidia、Ericssonなどが参加。

参考文献

Perplexity AIをAppleが狙う理由とは?──検索戦略の再構築が始まった

はじめに

Appleが現在、AI検索分野に本格参入を模索しているなか、注目を集めているのが AI検索スタートアップ「Perplexity AI」 の買収をめぐる“社内協議”です。Bloombergの報道を皮切りに、この話題は各メディアでも続々報じられています。今回は主要メディアの報道を整理し、Appleの狙いと今後の展望をわかりやすく解説していきます。

🔍 主な報道まとめ

1. Reuters(ロイター)

  • Bloombergのレポートを受け、「内部で買収案が検討されたが、Perplexity側には共有されていない」 と伝える  。
  • Perplexityは「M&Aについて認識なし」と公式声明。Appleはコメントを控えています 。
  • Perplexityは最近の資金調達で評価額140億ドル、Apple史上最大のM&Aになり得ると報道  。
  • Adrian Perica(M&A責任者)とEddy Cue(サービス責任者)が協議に参加し、Safariへの統合を念頭に置いているとされます  。

2. The Verge

  • Eddy Cueが米司法省の独占禁止訴訟で、「Safariでは検索数が初めて減少した」と証言。これがAI検索導入の背景にあると報じました  。

3. Business Insider

  • Google検索からAI検索(OpenAI、Perplexity、Anthropic)へのトレンドシフトを報告し、Google株が8%以上急落したと解説  。

4. WSJ(Wall Street Journal)

  • AppleのAI戦略が岐路に立たされており、Siriの進化とSafariのAI統合が「失敗か成功か」の二択に直面していると指摘 。

🧠 背景と分析

✅ なぜ今、Perplexityなのか?

  • 評価額140億ドル のPerplexityは、ChatGPTやGoogle Geminiに迫る勢いで、若年層に支持されるAI検索エンジン 。
  • Siri や Apple Intelligence と比べ、即戦力としての性能・知名度ともに抜きん出ています  。

⚖️ Googleとの関係はどうなる?

  • AppleはGoogleに毎年約200億ドル支払い、Safariのデフォルト検索エンジンに設定。その契約は米司法省の独占禁止訴訟により見直し圧力がかかっています  。
  • AI検索への舵を切ることで、収益モデルの多角化やユーザーの利便性向上を狙っています。

🏁 他企業の動き

  • Meta:以前買収を試みた後、総額148億ドルでScale AIに出資  。
  • Samsung:既にPerplexityと提携交渉中で、Galaxy端末へのプリインストールなど報道あり  。

🧩 現状まとめ

ポジション状況
Apple内部で初期協議済。正式なオファーは未実施。Safari/Siri統合を視野に。
Perplexity買収交渉について「認識なし」と公式否定。
GoogleSafariデフォルト維持からAI検索転換で株価に影響。
競合他社Meta→Scale AI、Samsung→Perplexity連携が進行中。

💡 今後の注目点

  1. 公式アナウンスの有無  AppleまたはPerplexityからの正式声明・コメント発表をチェック。
  2. 独禁法裁判の行方  裁判次第ではGoogleとの契約が打ち切られ、Perplexity導入の動きが加速する可能性。
  3. Safari実装の実態  iOSやmacOSのアップデートで、Perplexityが選択肢に入るかどうか注目。
  4. 他社の提携進行  特にSamsungとの合意内容が示されると、Appleの後手が明らかに。

✨ 終わりに

AppleがPerplexityを買収すれば、それは年間200億ドル規模のGoogle依存からの脱却を意味します。SiriやSafariが強力なAI検索エンジンに進化すれば、ユーザー体験・収益構造ともに大きな転機となるでしょう。今後のアップル株の動きや、他社との提携競争にも注目です。

📚 参考文献リスト

Appleも参入──AIが切り拓く半導体設計の未来

2025年6月、Appleがついに「生成AIをチップ設計に活用する」という方針を打ち出しました。ハードウェア部門の責任者であるジョニー・スロウジ(Johny Srouji)氏は、既存の設計プロセスの課題を指摘しつつ、「AIはチップ設計における生産性を大きく向上させる可能性がある」と語りました。

Appleは、SynopsysやCadenceといったEDA(Electronic Design Automation)大手のAIツールと連携する形で、将来的には設計の初期段階から製造準備までの自動化を視野に入れているとのことです。

チップ設計の複雑化とAI活用の必然性

Appleの発表は決して突飛なものではありません。むしろこの数年で、チップの設計・製造にAIを導入する動きは急速に広がってきました。

ナノメートルスケールでの設計が求められる現代の半導体業界では、人間の手だけでは最適化が難しい領域が増えてきています。具体的には、次のような作業がボトルネックになっています:

  • 数百万個のトランジスタ配置(フロアプラン)
  • 消費電力・性能・面積(PPA)のトレードオフ
  • タイミングクロージャの達成
  • 検証作業の網羅性確保

こうした高難度の設計工程において、機械学習──特に強化学習や生成AI──が威力を発揮し始めています。

SynopsysとCadenceの先進事例

EDA業界のトップランナーであるSynopsysは、2020年に「DSO.ai(Design Space Optimization AI)」を発表しました。これは、チップ設計の中でも特に難しいフロアプランやタイミング調整を、AIに任せて自動最適化するという試みでした。

SamsungはこのDSO.aiを用いて、設計期間を数週間単位で短縮し、同時に性能向上も実現したと報告しています。Synopsysはその後、設計検証用の「VSO.ai」、テスト工程向けの「TSO.ai」など、AIプラットフォームを拡張し続けています。

Cadenceもまた「Cerebrus」などのAI駆動型EDAを開発し、チップ設計の一連のプロセスをAIで強化する路線を取っています。さらに最近では、「ChipGPT」なる自然言語による設計支援も開発中と報じられており、まさにAIを設計の第一線に据える姿勢を明確にしています。

Google・DeepMindの研究的アプローチ

一方で、GoogleはDeepMindとともに、AIを用いた論文レベルの研究も行っています。2021年には、強化学習を用いてトランジスタのフロアプランニングを自動化するモデルを発表し、同社のTPU(Tensor Processing Unit)の設計にも応用されているとされています。

人間設計者が数週間かける設計を数時間でAIが行い、しかも性能面でも同等以上──という結果は、チップ設計の常識を覆すものでした。

オープンソースの潮流──OpenROAD

また、米カリフォルニア大学サンディエゴ校を中心とする「OpenROAD」プロジェクトは、DARPA(米国防高等研究計画局)の支援のもとでオープンソースEDAを開発しています。

「24時間以内にヒューマンレスでRTLからGDSIIまで」を掲げ、AIによるルーティング最適化や自動検証機能を搭載しています。業界の巨人たちとは異なる、民主化されたAI設計ツールの普及を目指しています。

AppleがAIを導入する意味

Appleの発表が注目されたのは、同社がこれまで「社内主導・手動最適化」にこだわり続けてきたからです。Apple Siliconシリーズ(M1〜M4)では、設計者が徹底的に人間の手で最適化を行っていたとされています。

しかし、設計規模の爆発的増加と短納期のプレッシャー、競合他社の進化を前に、ついに生成AIの力を受け入れる方針へと舵を切った形です。

これは単なる設計支援ではありません。AIによる自動設計がAppleの品質基準に耐えうると判断されたということでもあります。今後、Apple製品の中核となるSoC(System on Chip)は、AIと人間の協働によって生まれることになります。

今後の予測──AIが支配するEDAの未来

今後5〜10年で、AIはチップ設計のあらゆるフェーズに浸透していくと予想されます。以下のような変化が考えられます:

  • 完全自動設計フローの実現:RTLからGDSIIまで人間の介在なく生成できるフローが実用段階に
  • 自然言語による仕様入力:「性能は◯◯、消費電力は△△以下」といった要件を英語や日本語で指定し、自動で設計スタート
  • AIによる検証とセキュリティ対策:AIが過去の脆弱性データやバグパターンを学習し、自動検出
  • マルチダイ設計や3D IC対応:複雑なダイ同士の接続や熱設計もAIが最適化

設計者の役割は、AIを監督し、高次の抽象的要件を設定する「ディレクター」のような立場に変わっていくことでしょう。

最後に──民主化と独占のせめぎ合い

AIによるチップ設計の革新は、業界の構造にも影響を与えます。SynopsysやCadenceといったEDA大手がAIで主導権を握る一方、OpenROADのようなオープンソースの流れも着実に力をつけています。

Appleが自社設計をAIで強化することで、他社との差別化がより明確になる一方で、そのAIツール自体が民主化されれば、スタートアップや大学も同じ土俵に立てる可能性があります。

AIが切り拓くチップ設計の未来。それは単なる技術革新ではなく、設計のあり方そのものを再定義する、大きなパラダイムシフトなのかもしれません。

用語解説

  • EDA(Electronic Design Automation):半導体やチップの回路設計をコンピュータで支援・自動化するためのツール群。
  • フロアプラン:チップ内部で回路ブロックや配線の物理的配置を決める工程。
  • PPA(Power, Performance, Area):チップの消費電力・処理性能・回路面積の3つの最重要設計指標。
  • タイミングクロージャ:回路の信号が制限時間内に確実に届くように調整する設計工程。
  • RTL(Register Transfer Level):ハードウェア設計で使われる抽象レベルの一種で、信号やレジスタ動作を記述する。
  • GDSII(Graphic Design System II):チップ製造のための最終レイアウトデータの業界標準フォーマット。
  • TPU(Tensor Processing Unit):Googleが開発したAI処理に特化した高性能な専用プロセッサ。
  • SoC(System on Chip):CPUやGPU、メモリコントローラなど複数の機能を1チップに集約した集積回路。
  • マルチダイ:複数の半導体チップ(ダイ)を1つのパッケージに統合する技術。
  • 3D IC:チップを垂直方向に積層することで高密度化・高性能化を実現する半導体構造。

参考文献

Meta、Scale AIに約2兆円を出資──CEOワン氏をスーパインテリジェンス開発へ招へい

Meta(旧Facebook)が、AIインフラを支える米国スタートアップ「Scale AI」に対して約14.3〜14.8億ドル(約2兆円)という巨額の出資を行い、AI業界に衝撃を与えました。さらに、Scale AIの創業者でCEOのアレクサンドル・ワン氏がMetaの“スーパインテリジェンス開発チーム”のトップに就任するという人事も発表され、今後の生成AI開発レースにおいて大きな転換点となりそうです。

Scale AIとは?

Scale AIは、2016年にアレクサンドル・ワン(Alexandr Wang)氏とルーシー・グオ(Lucy Guo)氏によって設立された米国サンフランシスコのスタートアップです。

主な事業は、AIモデルの学習に不可欠な「データのアノテーション(ラベリング)」と「モデルの評価サービス」の提供。高精度な学習データを効率よく大量に用意する能力が求められる現代のAI開発において、Scale AIの提供するサービスは、OpenAI、Meta、Google、Microsoftといったトッププレイヤーにとって不可欠な存在となっています。

特に、「人間とAIの協調によるラベリング(Human-in-the-Loop)」を軸としたラベル付けの品質管理技術は、同社の大きな強みです。ギグワーカーによるラベリングを世界規模で効率化しながら、精度を担保するためのプラットフォームとして「Remotasks」などを展開しています。

また、軍事や公共機関向けのプロジェクトにも関与しており、米国国防総省などとも契約を結ぶなど、その守備範囲は民間にとどまりません。

Metaの出資とCEO人事の背景

Metaは今回、非議決権株として49%の株式を取得するという形でScale AIに出資を行いました。この出資により、MetaはScale AIの経営には直接関与しない立場を取りながらも、データ供給とAI評価における独占的なアクセス権を得る可能性があります。

出資と同時に発表されたのが、Scale AIのCEOであるアレクサンドル・ワン氏がMetaに移籍し、同社の“Superintelligence Lab(スーパインテリジェンスラボ)”の責任者に就任するというニュースです。ワン氏はScale AIの創業以来、データ品質の重要性を業界に根付かせた立役者の一人。今回の人事は、MetaがAGI(汎用人工知能)開発に本格参入する象徴的な動きと見られています。

なお、ワン氏は引き続きScale AIの取締役として関与するものの、日常的な経営からは退く形となります。

業界へのインパクト

今回の出資と人事は、AI業界にとって無視できない影響を与えています。

GoogleやMicrosoft、OpenAIなどScale AIの顧客だった企業の中には、「Metaの傘下となった同社と今後もデータ契約を継続するべきか」について見直しを検討している企業も出てきています。競合と直接つながることに対して懸念があるためです。

一方で、Metaにとっては、LLaMAシリーズなどの大規模言語モデル開発で出遅れを取り戻すチャンスでもあります。AIの性能はモデルそのものだけでなく、「どれだけ高品質で信頼できる学習データを確保できるか」にかかっており、今回の出資はまさにその基盤を強化する狙いがあるといえるでしょう。

今後の展望

MetaのAI戦略は、OpenAIやAnthropic、xAIなどが凌ぎを削る次世代AI開発競争のなかで存在感を高めるための布石です。特に、AGI(Artificial General Intelligence)を見据えた「スーパインテリジェンス開発」という言葉が初めて正式に使われた点は象徴的です。

また、Scale AIはMetaに依存する形になったことで、業界での中立性を失う可能性があります。これは今後の顧客離れや再編にもつながるかもしれません。

まとめ

MetaによるScale AIへの出資とCEO人事は、表面的には“出資と転職”という単純な話に見えるかもしれません。しかし、その背後には次世代のAI開発に向けた熾烈な戦略競争があり、学習データというAIの「燃料」を誰が押さえるのかという本質的な争いが垣間見えます。

今後、MetaがScale AIの技術をどう取り込んでLLaMAシリーズやAGI開発を進めていくのか。競合各社がどのように対応するのか。業界全体の行方を左右する重要なトピックとなるでしょう。

参考文献

Midjourneyを提訴──ディズニーとユニバーサルが問う著作権の限界

はじめに

2025年6月、米ディズニーとユニバーサル・スタジオは、画像生成AIサービス「Midjourney」に対して著作権侵害および商標権侵害などを理由に提訴しました。

これは、生成AIが作り出すコンテンツが既存の著作物にどこまで接近できるのか、また著作権がAI時代にどのように適用されるかを問う重要な訴訟です。

本記事では、この訴訟の概要を紹介するとともに、LoRAやStable Diffusionなど他の生成AIツールにも関係する著作権の原則を整理します。

訴訟の概要

▶ 原告:

  • The Walt Disney Company
  • Universal Pictures

▶ 被告:

  • Midjourney Inc.(画像生成AIサービス)

▶ 主張の内容:

  1. 著作権侵害  Midjourneyが、ディズニーおよびユニバーサルのキャラクター画像などを無断で学習データに使用し、生成画像として提供している。
  2. 商標権侵害  キャラクター名・外観・象徴的な要素などを模倣し、消費者が混同するおそれがある。
  3. 不当競争  ライセンスを得ていない画像を提供することで、正規商品の市場価値を損なっている。

AI生成物と著作権の関係

AIによって生成された画像そのものに著作権があるかどうかは、各国で判断が分かれている分野ですが、生成のもとになった学習素材が著作物である場合には、問題が生じる可能性があります。

よくあるケースの整理:

ケース著作権的リスク
著作物の画像を学習素材として使用高い(無断使用は著作権侵害に該当する可能性)
学習に使っていないが、見た目が酷似内容次第(特定性・類似性が高い場合は侵害)
キャラを直接再現(LoRAやPromptで)高い(意匠の再現とみなされる可能性)
作風や画風の模倣通常は著作権の対象外(ただし境界は曖昧)

ファンアートや非営利創作も違法なのか?

結論から言えば、原作キャラクターの二次創作は原則として著作権侵害にあたります

  • 著作権法は、営利・非営利を問わず、原作の「表現の本質的特徴」を利用した場合、著作権者の許諾が必要としています。
  • よって、SNS上でのファンアート、同人誌の発行、LoRAモデルの配布なども、すべて「権利者の黙認」によって成り立っている行為です。

よくある誤解と整理

誤解実際
「非営利ならセーフ」❌ 著作権侵害は営利・非営利を問わない
「少し変えれば大丈夫」❌ 表現の本質的特徴が再現されていればNG
「第三者が通報すれば違法になる」❌ 著作権侵害の申し立ては権利者本人に限られる

今後の論点と注目点

  • LoRA・生成モデルにおける責任の所在  モデル作成者か?使用者か?それともサービス提供者か?
  • 訴訟によってAI学習に対する明確な指針が出る可能性  米国では「フェアユース」の適用範囲も議論対象になるとみられています。

まとめ

  • Midjourneyに対する著作権・商標権侵害訴訟は、AI生成物と著作権の関係を問う象徴的な事件です。
  • ファンアートやLoRAによる画像生成も、法的には著作権侵害に該当する可能性がある点に留意が必要です。
  • 著作権は営利・非営利を問わず適用されるため、「商売していなければ大丈夫」という認識は正しくありません。

AIを活用した創作活動を行う際には、法的リスクを理解し、可能であれば各コンテンツ提供者のガイドラインを確認することが望ましいと言えるでしょう。

Oracle Database@Google Cloud、ついに日本上陸──クラウド移行とAI活用を加速するマルチクラウドの要石

2025年6月13日、オラクルとGoogle Cloudは日本市場に向けて「Oracle Database@Google Cloud」の提供を正式に開始しました。これは、Google Cloudの東京リージョン(アジア北東1)において、オラクルのフル機能データベースサービスが、クラウドネイティブな形で利用可能となる歴史的な一歩です。

従来、Oracle Databaseは自社クラウド(OCI)やオンプレミス、もしくはライセンス持ち込み型のクラウドでの利用が一般的でしたが、今回の発表は、Oracleが自らのデータベースを第三者クラウド上で提供・運用する初の試みです。このことにより、日本国内のクラウド移行、データ主権の確保、AI活用が一層加速されることが期待されます。

クラウドでも“フル機能のOracle”を

この新サービスでは、以下の先進的なOracleデータベースがGoogle Cloud上で利用可能です:

  • Oracle Exadata Database Service on Dedicated Infrastructure
    最新のX11Mアーキテクチャを採用し、AI・分析・OLTP(オンライントランザクション処理)における高性能を実現。Real Application Clusters(RAC)にも対応。
  • Oracle Database 23ai
    JSONとリレーショナルを統合した「JSON Relational Duality Views」や、「Oracle AI Vector Search」など、AI時代を見据えた機能を300以上搭載。
  • Oracle Autonomous Database
    フルマネージド型のクラウドデータベースで、Google CloudのAPI・UIに完全統合。パフォーマンス、可用性、セキュリティのすべてにおいて高水準を提供。
  • Oracle Base Database Service(近日提供)
    軽量な仮想マシンベースのデータベース。19cや23aiなどを従量課金で利用可能。ローコード開発もサポート。

AIとクラウドネイティブ開発の融合

Oracle Database@Google Cloudは、GoogleのGeminiやVertex AIなどのAI基盤と統合可能であり、開発者にとってはクラウドネイティブなAIアプリケーション開発の出発点となります。

また、JSON×RDB統合、非構造データの検索、AI推論基盤との連携など、データ活用の可能性が大きく広がります。

パートナーエコシステムの再構築へ

OracleとGoogle Cloudは、再販プログラムの創設により、日本国内のSIerやクラウド事業者と連携し、企業のマルチクラウド導入を強力に支援します。Google Cloud Marketplace経由での提供が可能になり、導入・運用の敷居が大きく下がる点も魅力です。

株式会社システムサポートをはじめとする主要パートナーは、この環境を活かして、より柔軟なクラウド構成とデータソリューションの提供を目指しています。

今後の展開:グローバル対応へ

今回提供開始となったのは東京リージョンですが、今後12カ月以内に大阪(アジア北東2)、ムンバイ(アジア南1)など、複数リージョンでの展開が予定されています。これは、Oracleの「分散クラウド戦略」の一環であり、パブリック、プライベート、マルチクラウドを柔軟に組み合わせるポートフォリオ戦略が基盤となっています。

おわりに

「Oracle Database@Google Cloud」の登場により、日本の企業は“クラウドネイティブでありながら、Oracleの完全な機能性を享受できる”という新たな選択肢を手にしました。特に、AI活用、データレジデンシー、既存DB資産の活用に悩む企業にとっては、待望のソリューションとなるでしょう。

これからの日本におけるクラウド移行、AI統合の中核を担う存在として、この発表は今後の市場を左右する大きな転換点といえます。

参考文献

AutoMLの現在と今後

機械学習と言えば、人工知能技術の中でも特に注目されている分野です。機械学習は、私たちが日常的に利用している様々なサービスやアプリケーションの背後にある技術として存在しています。しかし、機械学習は専門知識が必要な分野であり、特にモデルの選択や最適化のプロセスは非常に難解です。そこで、最近注目を集めているのが「AutoML」という分野です。本記事では、AutoMLについておさらいしつつ、自動化によってどのような利益をもたらすのか、そして今後の展開について考えます。

AutoMLとは

AutoML(Automated Machine Learning)とは、機械学習モデルの設計や最適化の工程までを自動化する技術の総称です。データの前処理、特徴量選択、モデル選択、ハイパーパラメータのチューニングなどを効率化し、専門知識がないユーザーでも高品質なモデルを作成可能にします。

「AutoML」という言葉が初めて使われた正確な時期を特定するのは難しいですが、その概念自体は2000年代後半から存在し、2010年代に入ってから注目を集め始めました。

機械学習とは

機械学習についておさらいしてきましょう。

機械学習は、人工知能の一分野で、アルゴリズムと統計を使用して、コンピュータがタスクを自動的に改善する能力を持つように設計されています。つまり、明示的なプログラミングなしにコンピュータが学習し、新しいデータに対する予測や決定を行う能力を持ちます。

機械学習の手法は大きく分けて、教師あり学習、教師なし学習、強化学習の3つのカテゴリーに分けられます。教師あり学習では、既知のデータ(ラベル付きデータ)を使ってモデルを訓練し、新たなデータに対する予測を行います。教師なし学習では、ラベルが付けられていないデータからパターンや構造を見つけ出します。強化学習は、試行錯誤を通じて最適な行動を学習する方法で、特定の目標を達成するために最適な行動を選択する能力を獲得します。

これらの手法は、画像認識、自然言語処理、医療診断、株価予測など、様々な分野で広く応用されています。

また、昨今注目されているディープラーニングは機械学習の一部となります。

AutoMLに対する懸念や疑問

AutoMLに触れたことの方にとっては様々な懸念や疑問があると思います。よく聞くものをいくつか挙げておきます。これらの懸念や疑問はすでに解決しているものもありますが、これから解決していくものもあります。

AutoMLがどのように動作しているのかがよくわからない

AutoMLツールはデータに基づいて最適なモデルを選択し、そのパラメータを調整します。しかし、その内部のプロセスは専門的な知識がなければ理解するのが難しい場合があります。これは、「ブラックボックス問題」とも呼ばれ、どのようにそれが最終的な結果を生成したのか明確ではないことを意味します。

数式や内部の理論まで必要になることは少ないと思いますが、少なくとも手法について概要やメリット・デメリット、適している問題領域などについては理解しておくことが必要となると思います。

データ品質の影響を強く受けるのではないか

AutoMLは提供されたデータに基づいて学習と予測を行います。したがって、データの品質や適切な前処理がモデルのパフォーマンスに大きく影響します。データが不適切または偏っていると、モデルの結果も偏るか、不正確になる可能性があります。

現実の問題においてはデータの品質が常に高いとは限りません。AutoMLは先に触れたように「ブラックボックス問題」があるため、データの品質がモデルや予測にどの程度影響があるのかがわからないという不安を感じやすいといえます。

ただ、AutoMLではデータやモデルの学習結果を可視化できるものも多く存在するため、そういった機能を活用してしっかり確認していくことが重要です。

モデルの適用範囲が十分ではない

すべての問題がAutoMLに適しているわけではありません。特に複雑な問題や専門的な知識を必要とする問題では、手動で設計された特定のモデルの方が適している場合があります。

また、AutoMLにも種類があり、色々な問題に適用できるAutoMLもあれば、特定の問題に特化しているAutoMLもあります。具体的な製品については後ほど説明します。

コストと時間がかかる

AutoMLの多くはサービス、特にクラウドサービスとして提供されており、大規模なデータセットや複雑なモデルを扱う場合、AutoMLの訓練と評価にはかなりの時間とコンピューティングリソースが必要になることがあります。

直感的にはマニュアルよりもオートの方が余計な処理を行っているような気がしてしまうので、余計なコスト・料金がかかっているのではないかという懸念は当然かもしれません。

とはいえ、AutoMLの製品・サービスは日々アップデートを繰り返して高性能化していますし、クラウドサービスは規模の経済性によって利用者が増えることによってコストが安くなっていくので、こういった不安は今後解消してくものと思います。

プライバシーとセキュリティに不安がある

機密性の高いデータを扱う際には特定のセキュリティリスクをもたらす可能性があります。データが適切に保護されているかどうか、またそのデータがどのように使用されるかについて明確な理解が必要です。

これはAutoMLに限ったことではなく、機密性の高いデータが学習に使われて何かの拍子に流出するようなことがないか、という懸念はAutoMLに限らず話題になることでしょう。

AutoMLはどのような問題を解決するのか

AutoMLはどのような問題を解決するのでしょうか。

AutoMLによって、モデルの選択や最適化のプロセスを自動化できます。これによって、専門的な知識やスキルを持つ人材がいなくても、機械学習を導入することができます。また、自動化によって、機械学習の開発時間やコストを削減することができます。その結果、機械学習がビジネスや研究に利用される可能性が高まります。

AutoMLの製品・サービス

以下に、AutoMLの具体的な製品とサービスを汎用的な問題に対応した製品・サービス、特定の領域に特化したいくつか挙げておきます。

汎用的な問題に対応した製品・サービス

  1. Google Cloud AutoML:Googleが提供しているサービスで、非専門家でも高品質なカスタムモデルを構築できるようにすることを目指しています。データのアップロードからモデルの訓練、評価、デプロイまでの一連のプロセスを自動化しています。
  2. AutoML in Microsoft Azure:Microsoft Azure内のMachine Learningサービスの一部として提供されています。AzureのAutoMLは、データの前処理、モデル選択、ハイパーパラメータ調整を自動化し、ビジネス上の問題に対する最適なモデルを導き出すことを可能にします。
  3. Amazon SageMaker Autopilot:機械学習モデルの全体的なプロセスを自動化するサービスです。このサービスは、まずデータセットを自動的に解析し、データの前処理や適切なアルゴリズムの選択を自動で行います。次に、様々なモデルとパラメータを試し、最も性能の良いモデルを見つけ出します。
  4. H2O.ai’s AutoML:H2O.aiが提供しているオープンソースのAutoMLフレームワークで、複数の機械学習モデルの訓練と評価を自動化します。

特定の領域に特化した製品・サービス

  1. Vertex AI:機械学習(ML)モデルの開発、デプロイメント、管理を統合的に行うためのフルマネージド型プラットフォームです。機械学習のライフサイクル全体をカバーし、データサイエンティストやMLエンジニアが独自のモデルを効率的に開発、訓練、デプロイするためのツールとサービスを提供します。
  2. DataRobot:データサイエンティストとビジネスアナリストが効率的にデータから洞察を得るために設計されたAutoMLプラットフォームです。特定の業界や業務に適用可能なモデルを自動的に生成します。

AutoMLの動作原理

AutoML(Automated Machine Learning)の動作原理は、一連の機械学習の工程を自動化することにあります。主な工程は、データの前処理、特徴選択、モデル選択、そしてハイパーパラメータの最適化となります。以下にそれぞれ詳しく説明します。

  1. データ前処理: これは、欠損値の補完、カテゴリ変数のエンコーディング、スケーリングや正規化など、モデルがデータを効率的に処理できる形に変換する工程です。AutoMLはこれらのタスクを自動的に行います。
  2. 特徴選択: これは、モデルが最も重要で意味のある情報に集中できるように、不要または冗長な特徴を取り除く工程です。AutoMLは、特徴の重要度を評価し、最も意味のある特徴だけを選択します。
  3. モデル選択: 機械学習にはさまざまな種類のモデルがあります。AutoMLは、問題のタイプ(分類、回帰、クラスタリングなど)とデータに基づいて最適なモデルを自動的に選択します。
  4. ハイパーパラメータ最適化: ハイパーパラメータはモデルの性能に大きな影響を与える設定値です。AutoMLは、さまざまなハイパーパラメータの組み合わせを試し、最良の性能を出す組み合わせを見つけ出します。

これらのプロセスを通じて、AutoMLはデータから予測モデルを自動的に生成します。その結果、非専門家でも効率的に高品質な機械学習モデルを構築することが可能になります。

AutoMLの限界について

しかし、AutoMLには限界もあります。

例えば、AutoMLによって自動化されるプロセスは限定されており、データ前処理や特徴量エンジニアリングなどの一部のタスクには対応していない場合があります。また、自動化が進んだ場合、技術的なノウハウが失われてしまう可能性もあります。このため、AutoMLの導入には慎重な検討が必要です。

  1. 一部のカスタマイズが難しい:AutoMLは、データの前処理やモデルの訓練といった工程を自動化しますが、その自動化により一部の細かな調整やカスタマイズが難しくなる場合があります。特に、特定の問題に特化した独自のモデルを作りたい場合、AutoMLだけでは不十分な場合があります。
  2. 解釈可能性と透明性に疑問がある:AutoMLは最適なモデルを自動的に選択しますが、その選択プロセスはユーザーにとって不透明で、選択されたモデルがどのように機能しているか、なぜそのモデルが選ばれたのかを理解するのが難しい場合があります。
  3. データの質を保つための準備が大変:AutoMLは、高品質なモデルを構築するためには、クリーンで整形されたデータが必要となります。つまり、データが不完全であったり、欠損値や異常値が含まれていると、モデルの性能に影響を与える可能性があります。
  4. コストがかかる:AutoMLサービスは、大量の計算リソースを使用することがあり、それによりコストが高くなる可能性があります。また、AutoMLが行うモデルの探索やハイパーパラメータチューニングのプロセスは、長時間にわたることが多く、これがさらにコストを増加させる要因となります。
  5. 一般的なソリューションに過ぎない: AutoMLは非常に有用なツールですが、特定の問題に対して最適化されたソリューションを提供するわけではありません。それは一般的なソリューションを提供するツールであり、特定の問題に最適なモデルを作成するためには、専門的な知識と手動のチューニングが依然として必要な場合があります。

これらの問題は現時点での問題で、今後改善していくことが期待されています。

最後に

本記事では、AutoMLについて説明しました。

AutoMLは、機械学習におけるモデルの選択や最適化のプロセスを自動化する技術であり、専門的な知識を持たないユーザーでも機械学習を利用することができます。自動化によって、機械学習の開発時間やコストを削減することができ、機械学習がビジネスや研究に利用される可能性が高まります。しかしながら、AutoMLには限界や懸念もあり、その導入には慎重な検討が必要です。

AutoMLは進歩の目覚ましい分野でもあります。現在抱えている疑問や不安、AutoML自体の限界は徐々に解消されていくことでしょう。また、最近ではRPA、ノーコード・ローコード開発・プロンプトエンジニアリングなど、小さい労力でシステムを開発することに注目が集まっています。この傾向は今後も続くと考えられ、AutoMLもその一つとなると思います。

AutoMLの可能性に期待しつつ、今後の展開に注目していきましょう。

AIベースのサイバーセキュリティは私たちに何をもたらすのか

現在のインターネット時代において、オンライン上には多大な情報が流通しているため、多くの企業や個人がサイバーセキュリティに関心を持っています。

しかし、発展したテクノロジーにより、サイバー攻撃も進化し続けているのが現状です。そのため、AIベースのサイバーセキュリティが注目されています。この記事では、AIベースのサイバーセキュリティについて、概要と具体的な製品・事例を説明し、今後どのような製品が発表されいくのか、我々を取り巻くセキュリティ事情がどう変わっていくのかについて展望します。

AIによってサイバーセキュリティはどう変わるのか


AIベースのサイバーセキュリティは、従来のセキュリティプログラムに比べ、より高度な脅威を特定し、より速く対処することができます。それは、AIが大量のデータを学習し、自己のアルゴリズムを改善することができるためです。具体的には、マルウェアやスパムフィルター、フィッシング攻撃などのサイバー攻撃を特定し、AIが自動的に対処することができます。また、AIは攻撃を予測することも可能で、攻撃を未然に防ぐための情報提供も行えます。

AIベースのサイバーセキュリティ製品

AIベースのサイバーセキュリティ製品としては、国内外の多くの企業がこれに注力しています。いくつか具体的な製品をご紹介します。

CylancePROTECT (開発企業: Cylance Inc. / BlackBerry Limited)

CylancePROTECTは、AIと機械学習を使用してマルウェアやランサムウェアを検出し、予防するセキュリティソフトウェアです。マルウェアの特徴や挙動を学習し、新たな脅威をリアルタイムで検知します。Cylance Inc.が開発し、後にBlackBerry Limitedによって買収されました。

Darktrace (開発企業: Darktrace Limited)

Darktraceは、自己学習型のサイバーセキュリティプラットフォームであり、AIアルゴリズムを使用してネットワークの異常な挙動や攻撃を検出します。ネットワーク全体を監視し、内部および外部の脅威から組織を保護します。

Palo Alto Networks Cortex XDR (開発企業: Palo Alto Networks)

Palo Alto Networks Cortex XDRは、エンドポイント、ネットワーク、クラウド上のセキュリティイベントを統合的に分析し、高度な脅威を検出するプラットフォームです。AIと機械学習による挙動分析や自動化により、リアルタイムの脅威インテリジェンスを提供します。

Symantec Endpoint Protection (開発企業: Broadcom Inc.)

Symantec Endpoint Protectionは、AIとマシンラーニングを活用したエンドポイントセキュリティソリューションです。悪意のあるファイルや不正な挙動をリアルタイムで検知し、防御します。また、攻撃者の手法やパターンを学習し、未知の脅威にも対応します。

残されている課題

AIを採用したサイバーセキュリティでは、予測不可能な脅威に対応することができるため、今後ますます多くの企業がこの技術に着目することが予想されます。例えば、既存の情報セキュリティプログラムを補完することで、企業がより高度な防御を実現できるようになります。また、AIによって攻撃が未然に防止された場合、企業は慎重な情報管理やプライバシー保護についても評価されます。

しかし、良いことばかりではなく、いくつかの課題が残されています。これらの課題は裏を返せば、サイバーセキュリティ製品を導入する個人や企業が製品を選定する際に注意しなければならない点であり、運用する上で知っておかなければならないことであるとも言えます。

偽陽性と偽陰性

AIはデータとパターンを学習して予測や判断を行いますが、完全な正確性を保証することは難しい場合があります。AIモデルは誤って正常な活動を異常と判断する「偽陽性」や、悪意のある活動を見逃す「偽陰性」の問題を抱えることがあります。

トレーニングデータの品質とバイアス

AIモデルはトレーニングに使用されるデータの品質に大きく依存します。セキュリティ分野では、正確なラベル付けされたトレーニングデータを収集することが困難な場合があります。また、トレーニングデータに偏りがある場合、モデルにバイアスが生じ、誤った判断をする可能性があります。

進化する攻撃手法への適応

サイバー攻撃者は常に新たな手法やテクニックを開発しています。AIモデルは過去のデータに基づいて学習するため、未知の攻撃に対しては対応が難しい場合があります。攻撃者がAIを迂回する手法を開発することもあります。

プライバシーと倫理の問題

AIを活用したセキュリティ製品は、ユーザーのデータを収集・分析する場合があります。個人のプライバシーや倫理的な観点から、データの収集や使用に関する懸念が存在します。適切なデータ保護措置や透明性が求められます。

誤った学習や攻撃への悪用のリスク

AIモデルは、誤った学習や故意に攻撃される可能性があります。攻撃者がモデルを欺くために誤ったデータを提供したり、モデル自体に対して攻撃を行ったりすることがあります。また、AIを悪用して攻撃を行う可能性もあります。

最後に

企業や個人がサイバー攻撃を受けるリスクが高まる中、AI技術を採用したセキュリティシステムが注目を集め、目覚ましい進化を遂げています。AIが予測と反応を行うことで、未知の脅威に対して高度な防御が可能になっていきます。しかしその一方で、AIを使ったセキュリティシステムは高い技術水準が求められるだけでなく、学習するという性質を逆手に取った攻撃のリスクもあります。

課題は多く残っていますが、今後、それらの課題が解決されていくことを期待しています。

AIがプログラマの仕事を奪うのか?

近年、AI技術が急速に発展しているため、懸念される一部の人がいます。彼らは、AI技術がプログラマの仕事を奪うことを心配しています。確かに、AI技術はコンピューターの処理能力を高めたため、プログラマの役割が変わりつつあることは確かです。しかし、AI技術はプログラマを置き換えるものではありません。今回の記事では、AI技術がプログラマに及ぼす影響について説明します。

生成AIの登場

近年、人工知能(AI)の高度化が進み、プログラマーを含む職の奪い合いが懸念されています。プログラミング界隈で話題を呼んだAIソフトウェアの例として、ChatGPTやGithub Copilotなどの生成AIがあります。

ChatGPTは、テキストベースの会話に対して人間のような応答を生成することができるAI搭載のチャットボットです。OpenAIのGPT(Generative Pre-trained Transformer)モデルをベースにしており、ディープラーニングを用いて大量のテキストデータのパターンを分析することができます。ChatGPTは、自然な会話を行い、ユーザーに役立つ回答を提供することができると評価されています。

一方、Copilotは、MicrosoftとGitHubが開発したAI搭載のコーディングアシスタントです。開発者がコードを入力する際に、コードスニペットを提案したり、コード行を補完したりすることで、より速く、より効率的にコードを書くことを支援するよう設計されています。Copilotは、機械学習を利用して既存のコードリポジトリを分析し、新しいコードの提案を行う。著作権侵害の可能性をめぐる批判もありますが、多くの開発者は便利なツールとして歓迎しています。

ChatGPTやCopilotのようなツールは、プログラミングのプロセスをより速く、より効率的にするのに役立ちますが、プログラマーを完全に置き換えることを目的としているわけではありません。むしろ、人間のプログラマーのアシスト役として、より速くコードを書き、仕事の質を向上させる手助けをするものです。しかし、あくまでも人間のスキルを補うためのものであり、人間の代わりになるものではないことを忘れてはいけません。

AIはプログラミングに変革をもたらした

AIは、あくまで人間が設計してプログラムしているものです。つまり、AIはプログラマがいなければ存在しません。プログラマがAI技術に向かい、それを構築し、設計し、アルゴリズムを開発しています。プログラマはAI技術の精度を向上させるため、自動機能の設定、AI技術の維持や世話など、AI技術に関する維持管理業務をしています。AIがプログラマを補完するものであり、置き換えるものではないのです。

専門家たちはAI技術に対する懸念を持っていますが、彼らはAI技術が必ずしも仕事を奪うものではないと言います。むしろ、AI技術を利用することで、プログラマは効率と正確性を向上させることができます。AI技術は書き物を検査し、曝露を見つけることができます。それによって、プログラマはより正確なコードを作成し、プログラムの品質を向上させることができます。

創造的な作業は人間にしかできない

プログラミングは、創造的なプロセスでもあります。人間が設計し、人間がアートワークを制作するのか、機械が機能を制作するのか、この選択には適切な答えはありません。新しいプログラマーのスキルが必要になることもあります。今のプログラマには創造的で高度なスキルが求められます。技術が進化するにつれて、プログラマーは適応しなければなりません。ここでAI技術はプログラムの効率を向上することで、人が創造的で革新的なアプローチに時間を費やすことを可能にします。

記憶することができないAIは、特定のプログラマが持つ専門知識や知識を持ちません。AIは、あくまで人間による制御下にあります。コンピュータに保持されていないノウハウ、知識、スキル、経験は、人間であるプログラマにのみ保持されています。

補完的な役割がAIに与えられることで、プログラマーよりも多くの時間と機会が提供されます。自動化されたプログラマーを持つ利点は、時間の節約、一貫した品質、より正確なプログラムであるため、ニーズが非常に高いです。学問に従事しているプログラマーにとって、AIは改善効果が得られます。

私はAIとどう向き合っているか

私自身も普段の開発では、 ChatGPTやGithub Copilot、Amazon CodeWhispererなどを使用しています。

ChatGPTにはうろ覚えのプログラムの書き方を聞いたり、DB設計の草案を考えてもらったり、トラブルの解決方法を聞いたりしています。とはいえ、情報の少ないニッチな内容については正確な答えが返ってこないことが多いですし、うまく伝わらないこともあります。最終的には真偽を確かめて、修正が必要な場合もあります。

Github Copilot、Amazon CodeWhispererを使ってお決まりのコードを生成してもらったり、単純なコピペではない似たようなコードを生成してもらったり、コメントを書いてそれに沿ったプログラムを生成してもらったりしています。よりインテリジェントでより柔軟なスニペットな使い方が中心になっています。

以前と比べると、同じものを作るにしてもタイピング量は格段に減りましたし、習熟度の低いプログラミング言語でもサクサク作れるようになりました。自身に合う/合わないもありますが、生産性を高めるツールはできるだけ試して、取り込んでいくことが大切だと思います。

最後に

技術が進化していくにつれて、プログラマーの役割が変化していくことは確かです。しかし、AI技術によって人間のプログラマーが排除されることはないことがわかりました。AI技術は、プログラマーが自分たちの能力を最大限に発揮するのに役立つ補完的な役割を持っていることがわかりました。AI技術をオプションとして導入することで、さまざまな業界でのプログラマーにとって、より生産的で成功したキャリアを築くことができます。プログラマは、AI技術を活用して、より正確なコード、益を上げるプログラム、より高い生産性などを目指すことができます。AI技術がいかにプログラマーに貢献するかを理解することが重要です。

モバイルバージョンを終了