dentsu JapanとOpenAIがマーケティング領域での研究開発をスタートしたと発表

画像の出典:dentsu Japanのプレスリリースより

電通グループの国内事業を統括・支援する dentsu Japanは、OpenAI社の最新の生成AI技術を活用したマーケティング領域における先進的なAIエージェントの研究開発を開始しました。OpenAI社は2024年4月に日本法人を設立し、日本市場での生成AIの普及・展開を牽引しています。

この取り組みは、急速に進化する生成AI技術、特に人と対話したり作業を自律的にこなしたりするAIエージェントが世界的に注目されている中で行われています。AIエージェントは、単純な質問応答だけでなく、業務効率化、マーケティングの高度化、新たなビジネス価値の創出など、多岐にわたる領域での活用が期待されています。

dentsu Japanは、この研究開発を通じて、独自のAI等級制度における「主席AIマスター」が率いる約150名のAIイノベーターを中心に活動しています。彼らは、OpenAI社が提供するデータセキュリティに配慮された「ChatGPT Enterprise」や最新の生成AI技術を活用し、先進的なAIエージェントの開発とその国内外におけるマーケティング領域での導入を推進しています。

顧客のマーケティング課題解決を支援する画期的なAIエージェントのプロトタイプは、2025年7月に開発が完了する予定です。

この研究開発は、dentsu Japanが掲げる独自のAI戦略「AI For Growth」を加速させるものです。「AI For Growth」は、「人間の知」と「AIの知」を掛け合わせることで、顧客や社会の成長に貢献していくことを目指しています。今回のAIエージェント開発により、全マーケティング工程におけるAI活用を通じたトランスフォーメーション(高度化・高速化・効率化・内製化)を加速し、「AIネイティブ化」の実現を推進していく考えです。dentsu Japanは、独自の視点と先進的なアプローチを強みに、「人間の知」と「AIの知」を掛け合わせることで、顧客の事業成長と社会の持続的な発展に貢献していくことを目指しています。

この協業の戦略的意義

電通グループの国内事業を統括・支援する dentsu Japan と OpenAI 社がマーケティング領域における AI エージェントの研究開発を開始したことは、双方にとって重要な戦略的意義を持っています。

dentsu Japanにとっての戦略的意義

  • 最新の生成AI技術の活用とAIエージェントの開発推進: dentsu Japan は、OpenAI 社の最新の生成 AI 技術、特にデータセキュリティーに配慮された「ChatGPT Enterprise」を活用することで、マーケティング領域における先進的な AI エージェントの開発を進めています。これは、急速に進化する生成 AI 技術、特に自律的に作業をこなす AI エージェントが世界的に注目されている状況に対応するものです。
  • 独自のAI戦略「AI For Growth」の加速: この研究開発は、dentsu Japan が掲げる「AI For Growth」戦略を加速させる中核となります。この戦略は、「人間の知」と「AI の知」を掛け合わせることで、顧客や社会の成長に貢献することを目指しています。
  • マーケティング全工程の「AIネイティブ化」実現: AI エージェントの開発・導入を通じて、全マーケティング工程におけるトランスフォーメーション(高度化・高速化・効率化・内製化)を加速し、「AIネイティブ化」の実現を推進していく考えです。AIエージェントがマーケティングの全工程をサポートするイメージが示されています。
  • 顧客課題解決への貢献と新たなビジネス価値創出: 顧客のマーケティング課題の解決を支援する画期的な AI エージェントのプロトタイプ開発を2025年7月に完了する予定であり、これは顧客事業成長への貢献を目指すものです。AIエージェントは、業務効率化やマーケティングの高度化に加え、新たなビジネス価値の創出も期待されています。
  • 社内AI人材の活用と育成: 独自の AI 等級制度における「主席 AI マスター」が率いる約 150 名の AI イノベーターがこの取り組みの中心となっています。これは、社内の専門人材とAI技術を融合させる「AIモデル」の深化にもつながります。

OpenAIにとっての戦略的意義

  • 日本市場におけるプレゼンス強化: OpenAI 社は2024年4月に日本法人を設立しており、日本市場での生成 AI の普及・展開を牽引しています。dentsu Japan のような日本の大手企業との連携は、日本市場での事業基盤を強化し、影響力を拡大する上で重要です。
  • エンタープライズ領域での技術適用と検証: dentsu Japan はデータセキュリティーに配慮された「ChatGPT Enterprise」や最新技術を活用して開発を進めており、これは OpenAI のエンタープライズ向けソリューションが実際のビジネス環境、特に複雑なマーケティング領域でどのように活用され、どのような成果をもたらすかを検証する機会となります。
  • AIエージェント技術の応用事例創出: AI エージェントは世界的に注目されており、業務効率化や新たなビジネス価値創出が期待される領域です。dentsu Japan との共同開発 は、OpenAI の基盤技術がマーケティングという特定のドメインでどのように高度な AI エージェントとして応用可能かを示す具体的な事例となります。
  • 有力パートナーとの協業による知見獲得: dentsu Japan の約 150 名の AI イノベーター が OpenAI の技術を活用することで、マーケティングの専門知識と AI 技術を組み合わせた新たな知見が生まれ、OpenAI の技術開発や企業向けソリューションの改善にフィードバックされる可能性があります。

総じて、この研究開発は、dentsu Japan にとっては先端技術を取り込み、自社のマーケティングサービスと組織を根底から変革し、顧客成長への貢献を加速させるための戦略的な一歩であり、OpenAI にとっては日本の重要市場において、先進的な企業パートナーと共に自社技術のエンタープライズ領域での適用を深め、AIエージェントを含む技術の可能性を探る機会となります。

マーケティング領域にAIを活用した事例

これまでに研究・実現されているマーケティング分野におけるAIの活用は多岐にわたり、その効率性と効果の高さから注目されています。AIを活用することで、マーケターにとって負担となっていた大量のデータ収集・分析を自動化し迅速化することが可能になります。また、顧客のニーズや購買行動を深く理解し、よりパーソナライズされたアプローチを実現する能力も持っています。

具体的なAIの活用事例としては、以下のようなものが挙げられます。

  1. データ分析の自動化・効率化:
    • 膨大な顧客データ(Webサイト閲覧履歴、SNS行動、メール開封率、購買履歴など)をリアルタイムで処理・分析し、傾向を読み取り、次のアクションを導く高度な意思決定支援を実現します。
    • これにより、従来時間と費用がかかっていたデータ分析作業が効率化され、マーケターの負担を軽減します。
    • 例えば、ホテルレビューの分析による競合差別化やユーザー特性の把握、ビッグデータ分析によるトレンド把握と新商品・サービス開発アイデアへの活用 が行われています。
    • SNS運用においても、リアルタイムデータ分析によりトレンドの変化や異常な行動を素早く捉え、即座に対応することが可能です。
  2. ターゲット層・顧客ニーズの深掘りとセグメンテーション:
    • AIは顧客の過去の購買履歴やオンラインでの行動データをリアルタイムに解析し、それに基づいた消費者インサイトを提供します。
    • 多様なデータをマルチアングルで処理し、顧客セグメンテーションをさらに精密化することが可能です。
    • これにより、ターゲット層ごとに適したマーケティング施策が実現し、より高い成果が得られます。
    • 企業は、ビッグデータ分析により顧客のニーズやライフスタイル、行動特性を詳細に把握し、販売促進や集客などのマーケティング施策の効率化に繋げています。
  3. パーソナライゼーション:
    • AIはデータ分析に基づき、リアルタイムで顧客の行動や傾向を把握し、個別のニーズに合ったマーケティングアプローチを実現します。
    • 顧客ごとの購買履歴や行動パターンに基づいたパーソナライズされた商品提案が可能になり、顧客満足度やブランドへのロイヤルティ向上に貢献します。
    • ECサイトでのレコメンドエンジン や、顧客の肌質・好みに基づくパーソナライズ化粧品提案(資生堂の事例) などがあります。
    • ユーザーの行動変化を察知し、リアルタイムで施策を最適化することで、「学習し続けるマーケティング」を実現します。
  4. コンテンツ生成とクリエイティブ制作:
    • 生成AIを活用することで、広告コピーや記事の自動生成、クリエイティブな提案を効率的に実現できます。
    • ターゲット顧客層に特化した広告文やデザインを作成することが可能になります。
    • これにより、作業効率の向上やコスト削減が可能になり、効果的かつ魅力的なマーケティングコンテンツを素早く投入できます。AIを活用することで、大量の高品質なコンテンツを迅速に作成することも可能です。
    • DAM(Digital Asset Management)システムにAIを搭載し、コンテンツの自動整理・分類(自動タグ付け、類似素材提案、使用傾向学習など)を行い、マーケティングチームのコンテンツ活用を効率化する事例もあります。
  5. 広告効果の最適化:
    • AIは広告のパフォーマンスデータを分析し、より高い反応率を得るための改善点を提案します。
    • ターゲットの購買履歴や行動データに基づき、関連性の高い商品・サービスを推奨したり、デモグラフィック情報や関心事に合わせた最適なメッセージやクリエイティブを表示したりすることで、広告のクリック率やコンバージョン率の向上が期待できます。
    • LINE株式会社では、AIによるパーソナライズ広告により、広告のクリック率とエンゲージメントを向上させています。
    • ニトリでは、AIを用いたマーケティングキャンペーンの最適化により、最適なタイミングとチャネルでの実施、効果測定と費用対効果の向上を実現しています。
  6. チャットボットとカスタマーサポート:
    • AIチャットボットは、顧客からの問い合わせに迅速かつ適切に対応し、満足度を高めます。
    • よくある質問に24時間365日対応することができ、顧客サポートの効率を大幅に改善し、コスト削減にも繋がります。
    • ECサイトでの問い合わせ対応効率化(もつ鍍専門店「肉の寺師」の事例) や、トヨタ自動車、パナソニック での導入事例があります。
    • ユーザーからの質問の意味をかみ砕いて回答できる点がAIチャットボットの特徴です。
    • チャットボットにパターン化されたやり取りを代行させることで、担当者はAIでは対応が難しいより複雑な案件に集中できます。
  7. マーケティングオートメーション:
    • AIエージェントが企業のマーケティング活動を効率化し、成果を最大化するための重要な手段となります。
    • 顧客の行動データや購買履歴を分析し、個別のニーズに応じたパーソナライズされた顧客体験を提供したり、AIが顧客データを分析し最適なタイミングで広告やメールを配信したりします。
    • 見込み顧客へのナーチャリング(商品やサービスの認知から購入に至るまでのプロセス最適化)にAIが活用されています。
  8. 需要予測と在庫管理:
    • AI技術を用いて商品の需要を正確に予測し、在庫管理を最適化することで、過剰在庫や品切れのリスクを軽減し、在庫コスト削減や顧客満足度向上、リピーター獲得に繋がります。
    • ユニクロでは、過去の販売データや市場トレンドなどを分析し、AIを活用して需要予測と在庫管理の最適化を行っています。
    • ホームセンター事業を営む企業では、AIを活用した需要予測システム導入により、ムダな在庫削減と売上増加を実現しました。
  9. その他の活用事例
    • サブスクリプション型サービスの解約リスク軽減のため、解約可能性の高いユーザーを事前に予測し、適切なタイミングでフォローアップを行う仕組み。
    • 見込み顧客の購入意向をAIが読み取り、効果が見込める顧客にのみインセンティブを付与することで購入者数をアップさせた事例。
    • 顧客データを分析し、最適な金融商品を提案することで顧客満足度向上とクロスセル促進を実現した楽天銀行の事例。
    • AIが商品購入ページ内に関連商品ページへ遷移するためのキーワード集を用意し、偶然的な出会いを担保したピーチ・ジョンの事例。
    • 日本航空(JAL)では、AIによる顧客データ分析で、ターゲットに最適なマーケティング戦略を策定し、顧客ロイヤルティとリピート率の向上を実現しています。

これらの個別のAI活用に加え、近年注目されているのが、環境を観察し目標達成のために自律的に行動するAIエージェントの台頭です。AIエージェントは、マーケティング業務全体の自動化を可能にする可能性を秘めています。

まとめ

全プロセスでないにせよ、マーケティングとAIは親和性は高く、業務の一部をAIエージェントに置き換えたり、AIによってプロセスの一部を自動化することが期待されます。直接の対話において、AIに任せられる領域は少なからずあると考えられます。

Nvidia規制で加速する中国のAI半導体自前化戦略

経緯

2018年以降、米中間の貿易摩擦が激化する中、米国は中国に対して先端半導体技術の輸出規制を段階的に強化してきました 。特に、AI用途で世界市場をリードするNvidiaのGPU(Graphics Processing Unit)への輸出を制限する措置が注目されます。  

2022年9月、米国政府はNvidia製の「A100」や「H100」などハイエンドGPUを対象に、中国企業や研究機関向けの輸出許可を厳格化すると発表し、これは同年10月に施行されました 。これにより、AI学習や推論のために高性能GPUを必要とする中国のクラウド事業者や研究機関は、従来どおりの供給ルートから調達できなくなりました。  

2022年10月には、米国商務省がさらに踏み込み、Nvidiaの「A100」や「H100」などを含むAI向け先端チップを対象とした輸出規制を施行しました 。これにより、Nvidiaの正規ルートでの対中国輸出は大幅に制限されることとなりました。  

2022年初頭、トランプ政権下で打ち出された一連の規制は、バイデン政権でも解除されることなく引き継がれました 。特に「米国製ソフトウェア(CUDAを含む)とライセンスを組み合わせたGPUボード」も対象に含まれたため、中国企業はNvidia製GPUを活用することが困難となりました。  

こうした環境下で、中国の主要テック企業は「既存のGPUプラットフォームに依存し続けることのリスク」を強く認識するに至りました。

2023年、Alibaba(阿里巴巴)、Tencent(騰訊)、Baidu(百度)などは、それまでNvidiaのGPUを用いて自社データセンターでAI研究やクラウドサービスを提供してきましたが、在庫が逼迫し始めたことで「国内メーカー製チップへの切り替え計画」を正式に策定しました 。  

同年末から2024年にかけて、Huawei(華為技術)が開発する「Ascend」シリーズをはじめ、Cambricon(寒武紀)、T-Head(兆芯)など複数の国産AIチップメーカーが、データセンター向けのサーバーデザインおよび大量製造のパートナーシップ構築を表明しました 。  

2024年春、NvidiaのBlackwell(次世代アーキテクチャ)搭載サーバーが米国国内で先行投入されたものの、対中国向けには「高帯域メモリ(HBM)を除外したセーフティバージョン」のみが許可される見込みと報じられました 。これに伴い、中国テック企業は「学習用途には残存分の旧世代Nvidia GPUを、推論用途には国産チップを併用」というハイブリッド戦略を取らざるを得ない状況となりました。  

2024年末から2025年初頭にかけて、Alibaba傘下のAI研究機関「DAMO Academy」はAI関連チップ(RISC-V CPUやFPGAなど)の開発を進め、その成果の一部(例:サーバーグレードCPU C930の2025年3月納入開始予定など)を公表しました 。これに続き、Tencent傘下のクラウド部門も国産チップを搭載したAIサーバーを試験導入しました。さらに、Baiduは「AI推論専用クリスタルボード」の量産に向けたラインを立ち上げ、中国政府系VCから数十億円規模の出資を取り付けました。  

同時に、北京、上海、深圳などには「AIチップ開発特区」が設置され、税制優遇や補助金支給を通じてスタートアップや既存大手企業の競争を促進しています 。2024年までに、多数の国内企業が「7nm以下のプロセス技術を用いたAIチップ」の製造を目指すプロジェクトを公表し、2025年には一部製品のサンプル出荷を目指しています 。代表例は、Iluvatar CoreX(天罡100シリーズ)、MetaX(GPGPU製品)、Biren Technology(BR100)、Black Sesame Technologies(ADAS・自動運転向けAIチップ)などです 。

背景

中国政府は2015年に「中国製造2025」を正式発表し 、その中で「半導体自給率向上」を国家戦略の重要課題の一つと位置づけました。以降、国家資金や地方政府の補助金を投入しつつ、国内企業の研究開発投資を強化してきました。  

一方、2022年以降の米国による輸出規制強化は、中国にとって「外部からの技術流入を遮断しようとする動き」として受け止められました。特に2022年10月のNvidia製先端GPUに対する輸出規制強化は、中国企業のAI開発ロードマップに大きな影響を及ぼしました 。  

中国には豊富な電力インフラが整備されています。2023年にハイテク産業向け電力消費は前年比11.2%増(一部資料では11.3% )となり 、再エネ・火力を合わせた発電能力が急速に拡大していることから、「演算性能あたりの消費電力がやや高い国産チップを複数並列稼働させても電力面で吸収可能」との見方が広がっています。  

また、マイニング用途でかつて大量に投入されたGPUが電力逼迫や環境面の課題を引き起こした一方、現在はAI用途向けにより効率的な専用チップを開発するほうが有益と判断されています 。こうした経緯もあり、「マイニング規制で獲得したデータセンター運用ノウハウをAIチップ開発に転用しやすい」というアドバンテージも存在すると言われています 。  

さらに、中国国内の大規模ユーザー(インターネット企業、金融機関、製造業など)が急速にAI需要を拡大していることから、国内市場だけで十分な需要が見込める点も、企業各社の自前化を後押ししています。「中国製造2025」では、2025年までに半導体自給率を70%に引き上げるという目標が掲げられていました 。政府は引き続き半導体の国内生産能力向上を目指しており、この目標達成に向けた官民連携が加速しています。  

今後の影響予測

技術的自立の進展と国際競争

国産AIチップがある程度の性能を有し、Nvidia製GPUとのギャップを埋められれば、グローバルにおける選択肢が拡大し、中国製チップが他国のデータセンターやAIプロバイダーにも採用される可能性があります 。特に、価格競争力のあるチップが登場した場合、北米・欧州との間で技術競争が激化し、NvidiaやAMD、Intelといった従来のプレイヤーはさらなる研究開発投資を迫られるでしょう 。  

サプライチェーンの再構築

2025年以降、中国は国産素材と製造装置の内製化を加速し、製造装置メーカー(EUVリソグラフィ装置など)への投資を強化する動きが予測されます 。将来的には、「製造から設計までの垂直統合型エコシステム」を構築し、外部リスク(米国の追加規制など)に耐えうる自律的な供給網を確立する可能性が高いです 。また、日本やオランダなどの先端装置メーカーも、対中ビジネスの在り方を見直し、「協業か取引制限か」の選択を迫られることになるでしょう 。  

国内AIエコシステムへの影響

中国国内のAIプラットフォームは、国産チップの普及によってコスト構造が変化し、AIサービスの価格低下と導入企業の拡大が進むと考えられます 。これにより、医療画像診断や自動運転、スマートシティなどの分野でAI導入が加速し、「産業全体のデジタルトランスフォーメーション」が一気に進展する可能性があります 。加えて、AI関連スタートアップも国産ハードウェアを活用しやすくなることで、開発のハードルが下がり、イノベーションの創出速度が向上するでしょう 。  

地政学的リスクと世界経済への波及

中国製チップが世界市場で一定のシェアを獲得すれば、米中両国間の技術覇権争いはさらなる激化を迎えます 。米国は追加の制裁や輸出規制を打ち出す一方、中国は対抗策として関税引き下げや輸出奨励を行う可能性が高いです 。この結果、「技術ブロック化」(Tech Bloc)の傾向が強まり、世界のサプライチェーンはさらに分断されるリスクがあります 。特に半導体素材や製造装置の二極化が進むと、日本や韓国、欧州諸国は両陣営の間で揺れる立場を余儀なくされるでしょう 。  

国内雇用と産業育成

国産AIチップの量産化が進めば、中国国内では「設計エンジニア」「プロセス開発技術者」「データセンター運用エンジニア」などの需要が急増し、人材育成ニーズが拡大します 。これに呼応して、大学や研究機関は半導体設計・製造分野のカリキュラムを強化し、国内の技術者供給を担保する動きが活発化するでしょう 。その結果、ハイテク産業の雇用創出効果が高まり、中国経済の高度化をさらに加速させる要因となります

まとめ

米国のエヌビディアGPU輸出規制に端を発した中国のAI半導体自前化戦略は、「国家安全保障上の必要性」と「膨大な国内市場の存在」という二つの要因に後押しされています。Nvidia規制前は高性能GPUを輸入に依存していた中国企業が、2023年以降は自社・国内メーカー製のAIチップにシフトし、既存のデータセンターアーキテクチャを改変して対応することを余儀なくされました 。政府の補助金や税制優遇措置、設計・製造拠点の集約化などを通じて、国内ベンダーは短期間で「7nmプロセスAIチップ」のプロトタイプ開発を達成しました 。2025年には一部企業が量産体制の構築を目指し、中国製AIチップの実運用が現実味を帯び始めています。  

今後、中国製チップの国際競争力が高まれば、世界のAIハードウェア市場は二極化傾向を強める可能性があります。技術ブロック化の懸念が高まる中、日本や欧州などのサプライチェーンは新たな調整を迫られるでしょう。国内ではAIサービスの普及と産業のデジタル化が加速し、ハイテク人材需要の高まりを背景に経済成長への寄与が期待できます。一方、米中間での技術覇権争いが激化すれば、半導体素材・製造装置の流通が一層限定され、各国は自国の供給網を強化せざるを得ない状況に陥るでしょう。

以上のように、「エヌビディア規制で加速する中国のAI半導体自前化戦略」は、単なる技術的トレンドにとどまらず、地政学的・経済的に重大なインパクトを伴う大きな潮流と言えます。

参考リンク

モバイルバージョンを終了