世界の行政に広がるAIチャットボット活用 ── 米国・海外・日本の現状と展望

近年、生成AIは企業や教育機関だけでなく、政府・公共機関の業務にも急速に浸透しつつあります。特に政府職員によるAI活用は、行政サービスの迅速化、事務作業の効率化、政策立案支援など、多方面での効果が期待されています。

しかし、こうしたAIツールの導入にはセキュリティ確保やコスト、職員の利用スキルなど多くの課題が伴います。その中で、AI企業が政府機関向けに特別な条件でサービスを提供する動きは、導入加速のカギとなり得ます。

2025年8月、米国では生成AI業界大手のAnthropicが、大胆な価格戦略を打ち出しました。それは、同社のAIチャットボット「Claude」を米連邦政府の全職員に向けて1ドルで提供するというものです。このニュースは米国の政府IT分野だけでなく、世界の行政AI市場にも大きな影響を与える可能性があります。

米国:Anthropic「Claude」が政府職員向けに1ドルで提供

2025年8月12日、Anthropic(Amazon出資)は米国連邦政府に対し、AIチャットボット「Claude」を年間わずか1ドルで提供すると発表しました。対象は行政・立法・司法の三権すべての職員で、導入環境は政府業務向けにカスタマイズされた「Claude for Government」です。

この特別提供は、単なるマーケティング施策ではなく、米国政府におけるAI活用基盤の一部を獲得する長期的戦略と見られています。特にClaudeはFedRAMP High認証を取得しており、未分類情報(Unclassified)を扱う業務でも利用可能な水準のセキュリティを備えています。これにより、文書作成、情報検索、議会審議補助、政策草案の作成、内部文書の要約など、幅広いタスクを安全に処理できます。

背景には、OpenAIが連邦行政部門向けにChatGPT Enterpriseを同様に1ドルで提供している事実があります。Anthropicはこれに対抗し、より広い対象(行政・立法・司法すべて)をカバーすることで差別化を図っています。結果として、米国では政府職員向けAIチャット市場において“1ドル競争”が発生し、ベンダー間のシェア争いが過熱しています。

政府側のメリットは明確です。通常であれば高額なエンタープライズ向けAI利用契約を、ほぼ無償で全職員に展開できるため、導入障壁が大幅に下がります。また、民間の高度な生成AIモデルを職員全員が日常的に使える環境が整うことで、事務処理のスピード向上政策文書作成の効率化が期待されます。

一方で、こうした極端な価格設定にはロックインリスク(特定ベンダー依存)や、将来の価格改定によるコスト増などの懸念も指摘されています。それでも、短期的には「ほぼ無料で政府職員全員が生成AIを活用できる」というインパクトは非常に大きく、米国は行政AI導入のスピードをさらに加速させると見られます。

米国外の政府職員向けAIチャットボット導入状況

米国以外の国々でも、政府職員向けにAIチャットボットや大規模言語モデル(LLM)を活用する取り組みが進みつつあります。ただし、その導入形態は米国のように「全職員向けに超低価格で一斉提供」という大胆な戦略ではなく、限定的なパイロット導入や、特定部門・自治体単位での試験運用が中心です。これは、各国でのITインフラ整備状況、データガバナンスの制約、予算配分、AIに関する政策姿勢の違いなどが影響しています。

英国:HumphreyとRedbox Copilot

英国では、政府内の政策立案や議会対応を支援するため、「Humphrey」と呼ばれる大規模言語モデルを開発中です。これは公務員が安全に利用できるよう調整された専用AIで、文書作成支援や法律文書の要約などを目的としています。

加えて、内閣府では「Redbox Copilot」と呼ばれるAIアシスタントを試験的に導入し、閣僚や高官のブリーフィング資料作成や質問対応の効率化を狙っています。いずれもまだ限定的な範囲での利用ですが、将来的には広範な職員利用を見据えています。

ニュージーランド:GovGPT

ニュージーランド政府は、「GovGPT」という国民・行政職員双方が利用できるAIチャットボットのパイロットを開始しました。英語だけでなくマオリ語にも対応し、行政手続きの案内、法令の概要説明、内部文書の検索などをサポートします。現段階では一部省庁や自治体職員が利用する形ですが、利用実績や安全性が確認されれば全国規模への拡大も視野に入っています。

ポーランド:PLLuM

ポーランド政府は、「PLLuM(Polish Large Language Model)」という自国語特化型のLLMを開発しました。行政文書や法令データを学習させ、ポーランド語での政策文書作成や情報提供を効率化します。こちらも現時点では一部の行政機関が利用しており、全国展開には慎重な姿勢です。

その他の国・地域

  • オーストラリア:税務当局やサービス提供機関が内部向けにFAQチャットボットを導入。
  • ドイツ:州政府単位で法令検索や手続き案内を支援するチャットボットを展開。
  • カナダ:移民・税関業務を中心に生成AIを試験導入。文書作成や質問対応に活用。

全体傾向

米国外では、政府職員向けAIチャット導入は「小規模で安全性検証を行いながら徐々に拡大する」アプローチが主流です。背景には以下の要因があります。

  • データ保護規制(GDPRなど)による慎重姿勢
  • 公務員組織のITセキュリティ要件が厳格
  • 政治的・社会的なAI利用への警戒感
  • 国産モデルや多言語対応モデルの開発に時間がかかる

そのため、米国のように短期間で全国レベルの職員にAIチャットを行き渡らせるケースはほとんどなく、まずは特定分野・限定ユーザーでの効果検証を経てから範囲拡大という流れが一般的です。

日本の状況:自治体主体の導入が中心

日本では、政府職員向けの生成AIチャットボット導入は着実に進みつつあるものの、国レベルで「全職員が利用可能な共通環境」を整備する段階にはまだ至っていません。現状は、地方自治体や一部の省庁が先行して試験導入や限定運用を行い、その成果や課題を検証しながら活用範囲を広げている段階です。

自治体での先行事例

地方自治体の中には、全職員を対象に生成AIを利用できる環境を整備した事例も出てきています。

  • 埼玉県戸田市:行政ネットワーク経由でChatGPTを全職員に提供。文書作成や市民への回答案作成、広報記事の草案などに活用しており、導入後の半年で数百万文字規模の成果物を生成。労働時間削減や業務効率化の具体的な数字も公表しています。
  • 静岡県湖西市:各課での利用ルールを整備し、SNS投稿文やイベント案内文の作成などで全職員が利用可能。利用ログの分析や事例共有を行い、安全性と効率性の両立を図っています。
  • 三重県四日市市:自治体向けにチューニングされた「exaBase 生成AI for 自治体」を全庁に導入し、庁内文書の下書きや条例案作成補助に利用。セキュリティ要件やガバナンスを満たした形で、職員が安心して利用できる体制を確立。

これらの自治体では、導入前に情報漏えいリスクへの対策(入力データの制限、利用ログ監査、専用環境の利用)を講じたうえで運用を開始しており、他自治体からも注目されています。

中央政府での取り組み

中央政府レベルでは、デジタル庁が2025年5月に「生成AIの調達・利活用に係るガイドライン」を策定しました。このガイドラインでは、各府省庁にChief AI Officer(CAIO)を設置し、生成AI活用の方針策定、リスク管理、職員教育を担当させることが求められています。

ただし、現時点では全国規模で全職員が生成AIを日常的に使える共通環境は構築されておらず、まずは試験導入や特定業務での利用から始める段階です。

観光・多言語対応分野での活用

訪日外国人対応や多言語案内の分野では、政府系団体や地方自治体が生成AIチャットボットを導入しています。

  • 日本政府観光局(JNTO)は、多言語対応チャットボット「BEBOT」を導入し、外国人旅行者に観光案内や災害情報を提供。
  • 大阪府・大阪観光局は、GPT-4ベースの多言語AIチャットボット「Kotozna laMondo」を採用し、観光客向けのリアルタイム案内を提供。

これらは直接的には政府職員向けではありませんが、職員が案内業務や情報提供を行う際の補助ツールとして利用されるケースも増えています。

導入拡大の課題

日本における政府職員向け生成AIの全国的な展開を阻む要因としては、以下が挙げられます。

  • 情報漏えいリスク:個人情報や機密データをAIに入力することへの懸念。
  • ガバナンス不足:全国一律の運用ルールや監査体制がまだ整備途上。
  • 職員スキルのばらつき:AIツールの活用法やプロンプト作成力に個人差が大きい。
  • 予算と優先度:生成AI活用の優先順位が自治体や省庁ごとに異なり、予算配分に差がある。

今後の展望

現状、日本は「自治体レベルの先行事例」から「国レベルでの共通活用基盤構築」へ移行する過渡期にあります。

デジタル庁によるガイドライン整備や、先進自治体の事例共有が進むことで、今後3〜5年以内に全職員が安全に生成AIチャットを利用できる全国的な環境が整う可能性があります。

総括

政府職員向けAIチャットボットの導入状況は、国ごとに大きな差があります。米国はAnthropicやOpenAIによる「全職員向け超低価格提供」という攻めの戦略で、導入規模とスピードの両面で他国を圧倒しています。一方、欧州やオセアニアなど米国外では、限定的なパイロット導入や特定部門からの段階的展開が主流であり、慎重さが目立ちます。日本は、国レベルでの共通環境整備はまだ進んでいませんが、自治体レベルで全職員利用可能な環境を整備した先行事例が複数生まれているという特徴があります。

各国の違いを整理すると、以下のような傾向が見えてきます。

国・地域導入規模・対象導入形態特徴・背景
米国連邦政府全職員(行政・立法・司法)Anthropic「Claude」、OpenAI「ChatGPT Enterprise」を1ドルで提供政府AI市場の獲得競争が激化。セキュリティ認証取得済みモデルを全面展開し、短期間で全国レベルの導入を実現
英国特定省庁・内閣府Humphrey、Redbox Copilot(試験運用)政策立案や議会対応に特化。まだ全職員向けではなく、安全性と有効性を検証中
ニュージーランド一部省庁・自治体GovGPTパイロット多言語対応(英語・マオリ語)。行政・国民双方で利用可能。全国展開前に効果検証
ポーランド一部行政機関PLLuM(ポーランド語特化LLM)自国語特化モデルで行政文書作成効率化を狙う。利用範囲は限定的
日本一部省庁・自治体(先行自治体は全職員利用可能)各自治体や省庁が個別導入(ChatGPT、exaBase等)国レベルの共通基盤は未整備。戸田市・湖西市・四日市市などが全職員利用環境を構築し成果を公表

この表からも分かるように、米国は「全職員利用」「低価格」「短期間展開」という条件を揃え、導入の規模とスピードで他国を大きく引き離しています。これにより、行政業務へのAI浸透率は急速に高まり、政策立案から日常業務まで幅広く活用される基盤が整いつつあります。

一方で、米国外では情報保護や倫理的配慮、運用ルールの整備を優先し、まずは限定的に導入して効果と安全性を検証する手法が取られています。特に欧州圏はGDPRなど厳格なデータ保護規制があるため、米国型の即時大規模展開は困難です。

日本の場合、国レベルではまだ米国型の大規模導入に踏み切っていないものの、自治体レベルでの実証と成果共有が着実に進んでいます。これら先行自治体の事例は、今後の全国展開の礎となる可能性が高く、デジタル庁のガイドライン整備や各省庁CAIO設置といった制度面の強化と連動すれば、より広範な展開が期待できます。

結論として、今後の国際的な動向を見る上では以下のポイントが重要です。

  • 導入スピードとスケールのバランス(米国型 vs 段階的展開型)
  • セキュリティ・ガバナンスの確立(特に機密情報を扱う業務)
  • 費用負担と持続可能性(初期低価格の後の価格改定リスク)
  • 職員の活用スキル向上と文化的受容性(研修・利用促進策の有無)

これらをどう調整するかが、各国の政府職員向けAIチャットボット導入戦略の成否を分けることになるでしょう。

今後の展望

政府職員向けAIチャットボットの導入は、今後5年間で大きな転換期を迎える可能性があります。現在は米国が先行していますが、その影響は他国にも波及しつつあり、技術的・制度的な環境が整えば、より多くの国が全国規模での導入に踏み切ると予想されます。

米国モデルの波及

AnthropicやOpenAIによる「低価格・全職員向け提供」は、導入スピードと利用率の急上昇を実証するケーススタディとなり得ます。これを参考に、英国やカナダ、オーストラリアなど英語圏の国々では、政府全体でのAIチャット活用に舵を切る動きが加速すると見られます。

データ主権と国産モデル

一方で、欧州やアジアの多くの国では、機密性の高い業務へのAI導入にあたりデータ主権の確保が課題になります。そのため、ポーランドの「PLLuM」のような自国語特化・国産LLMの開発が拡大し、外部ベンダー依存を減らす動きが強まるでしょう。

日本の展開シナリオ

日本では、先行自治体の成功事例とデジタル庁のガイドライン整備を土台に、

  • 省庁横断の安全な生成AI利用基盤の構築
  • 全職員向けの共通アカウント配布とアクセス権限管理
  • 全国自治体での統一仕様プラットフォーム導入 が3〜5年以内に進む可能性があります。また、観光や防災、医療など特定分野での専門特化型チャットボットが、職員の業務補助としてさらに広がると考えられます。

成功のカギ

今後の導入成功を左右する要素として、以下が挙げられます。

  1. 持続可能なコストモデル:初期低価格からの長期的な価格安定。
  2. セキュリティ・ガバナンスの徹底:特に機密・個人情報を扱う場面でのルール整備。
  3. 職員のAIリテラシー向上:利用研修やプロンプト設計スキルの普及。
  4. 透明性と説明責任:生成AIの判断や出力の根拠を職員が把握できる仕組み。

総じて、米国型のスピード重視モデルと、欧州型の安全性・段階的導入モデルの中間を取り、短期間での普及と長期的な安全運用の両立を図るアプローチが、今後の国際標準となる可能性があります。

おわりに

政府職員向けAIチャットボットの導入は、もはや一部の先進的な試みではなく、行政運営の効率化や国民サービス向上のための重要なインフラとして位置付けられつつあります。特に米国におけるAnthropicやOpenAIの1ドル提供は、導入のスピードとスケールの可能性を世界に示し、各国政府や自治体に対して「生成AIはすぐにでも活用できる実用的ツールである」という強いメッセージを送ることになりました。

一方で、全職員向けにAIを提供するには、セキュリティやガバナンス、費用負担の持続性、職員の利用スキルといった多くの課題があります。特に政府業務は、個人情報や機密性の高いデータを扱う場面が多いため、単に技術を導入するだけではなく、その利用を安全かつ継続的に行うための制度設計や教育体制が不可欠です。

日本においては、まだ国全体での統一環境整備には至っていないものの、自治体レベルで全職員が利用できる環境を構築した事例が複数存在し、それらは将来の全国展開に向けた重要なステップとなっています。こうした成功事例の共有と、国によるルール・基盤整備の進展が組み合わされれば、日本でも近い将来、全職員が日常的に生成AIを活用する環境が整う可能性は十分にあります。

今後、各国がどのようなアプローチでAI導入を進めるのかは、行政の効率性だけでなく、政策形成の質や国民へのサービス提供の在り方に直結します。米国型のスピード重視モデル、欧州型の安全性重視モデル、そして日本型の段階的かつ実証ベースのモデル。それぞれの国情に応じた最適解を模索しつつ、国際的な知見共有が進むことで、政府職員とAIがより高度に連携する未来が現実のものとなるでしょう。

最終的には、AIは政府職員の仕事を奪うものではなく、むしろその能力を拡張し、国民により良いサービスを迅速かつ的確に提供するための「共働者」としての役割を担うはずです。その未来をどう形作るかは、今まさに始まっている導入の在り方と、そこから得られる経験にかかっています。

参考文献

世界最大の量子制御システム、日本に導入──産業応用の最前線へ

2025年7月、日本の国立研究開発法人・産業技術総合研究所(AIST)にある「G‑QuATセンター」に、世界最大級の商用量子制御システムが導入されました。設置を行ったのは、測定機器の大手メーカーKeysight Technologies(キーサイト)。このニュースは、量子コンピューティングが“未来の話”から“現実の基盤技術”になりつつあることを示す、大きなマイルストーンです。

なぜ量子「制御」システムが注目されるのか?

量子コンピュータというと、よく紹介されるのは「冷却されたチップ」や「量子ビット(qubit)」という特殊な部品です。たしかにそれらは量子計算を実行するための中核ではありますが、実はそれだけでは計算は一切できません。この量子ビットに正しい信号を送り、制御し、状態を観測する装置──それが「量子制御システム」です。

例えるなら、量子コンピュータは“オーケストラの楽器”であり、制御システムは“指揮者”のような存在。どんなに素晴らしい楽器が揃っていても、指揮者がいなければ、演奏(=計算)は成り立ちません。

量子ビットは非常に繊細で、ほんのわずかな振動や熱、ノイズですぐに壊れてしまいます。そのため、ピコ秒(1兆分の1秒)単位のタイミングで、正確な電気信号を発生させて操作する技術が求められます。つまり、制御システムは量子計算を「使えるもの」にするための超精密制御エンジンなのです。

また、量子ビットの数が増えるほど、制御は一層困難になります。たとえば今回のシステムは1,000qubit以上を同時に扱える仕様であり、これは誤差を極限まで抑えつつ、大量の情報をリアルタイムに制御するという非常に高度な技術の結晶です。

近年では、量子計算そのものよりも「制御や誤差補正の技術が鍵になる」とまで言われており、この制御領域の進化こそが、量子コンピューティングの社会実装を支える重要なカギとなっています。

つまり、今回のニュースは単なる“装置導入”にとどまらず、日本が量子コンピュータを産業で活用するステージに本格的に進もうとしていることを象徴しているのです。

どんなことができるの?

今回導入された量子制御システムは、1,000個以上の量子ビット(qubit)を同時に操作できる、世界最大規模の装置です。この装置を使うことで、私たちの社会や産業が抱える“計算の限界”を超えることが可能になると期待されています。

たとえば、現代のスーパーコンピュータを使っても数十年かかるような膨大な計算──膨大な組み合わせの中から最適な答えを導き出す問題や、極めて複雑な分子の動きを予測する問題など──に対して、量子コンピュータなら現実的な時間内で解ける可能性があるのです。

具体的には、以下のようなことが可能になります:

💊 製薬・ライフサイエンス

新薬の開発には、無数の分子パターンから「効き目がありそう」かつ「副作用が少ない」化合物を探す必要があります。これはまさに、組み合わせ爆発と呼ばれる問題で、従来のコンピュータでは解析に何年もかかることがあります。

量子制御システムを活用すれば、分子構造を量子レベルで高速にシミュレーションでき、有望な候補だけをAIと組み合わせて自動選別することが可能になります。創薬のスピードが劇的に変わる可能性があります。

💰 金融・資産運用

投資の世界では、リスクを最小限に抑えつつ、できるだけ高いリターンを得られるような「資産配分(ポートフォリオ)」の最適化が重要です。しかし、対象が株式や債券、仮想通貨など多岐にわたる現代では、膨大な選択肢の中からベストな組み合わせを見つけるには高度な計算力が必要です。

量子コンピュータは、このような多次元の最適化問題を非常に得意としており、変動する市場にリアルタイムで対応できる資産運用モデルの構築に貢献すると期待されています。

🚛 ロジスティクス・輸送

物流の世界では、商品の輸送ルートや在庫の配置、配達の順番など、最適化すべき項目が山ほどあります。これらは「巡回セールスマン問題」と呼ばれ、従来のアルゴリズムでは限界がありました。

今回の量子制御システムを用いた量子コンピューティングでは、配送効率や倉庫配置をリアルタイムで最適化し、無駄なコストや時間を大幅に削減することが可能になります。これは物流業界にとって大きな変革をもたらすでしょう。

🔋 エネルギー・材料開発

電池や太陽電池、超電導素材など、新しいエネルギー材料の開発には、原子・分子レベルでの正確なシミュレーションが不可欠です。

量子制御システムによって、量子化学シミュレーションの精度が飛躍的に向上することで、次世代エネルギーの鍵となる素材が、これまでより早く、正確に発見できるようになります。

🧠 AIとの融合

そして忘れてはならないのが、AIとの連携です。AIは「学習」や「予測」が得意ですが、膨大なパターンの中から最適解を選ぶのは苦手です。そこを量子コンピュータが補完します。

たとえば、AIが生成した候補モデルから、量子計算で「最も良いもの」を選ぶ──あるいは、量子でデータを圧縮して、AIの学習速度を高速化するといった、次世代AI(量子AI)の開発も始まっています。

つまり何がすごいのか?

今回の量子制御システムは、これまで不可能だったレベルの「問題解決」を可能にする装置です。医療、金融、物流、エネルギーなど、私たちの生活のあらゆる裏側にある複雑な仕組みや課題を、より賢く、効率的にしてくれる存在として期待されています。

そしてその鍵を握るのが「量子制御」なのです。

G‑QuATセンターとは?

今回、世界最大級の量子制御システムが設置されたのは、国立研究開発法人 産業技術総合研究所(AIST)が設立した研究拠点「G‑QuATセンター」です。正式名称は、

Global Research and Development Center for Business by Quantum‑AI Technology(G‑QuAT)

という長い名称ですが、要するに「量子技術とAI技術を融合させて、新しい産業の創出を目指す」ための研究・実証・連携の拠点です。

🎯 G‑QuATの目的と背景

近年、量子コンピュータは基礎研究フェーズから、応用・実用フェーズに進みつつあります。しかし、量子計算は単独では産業に役立ちません。現実のビジネス課題に適用するには、AIやシミュレーション、既存システムとの連携が不可欠です。

G‑QuATはまさにその橋渡しを担う存在であり、

  • 「量子が得意なこと」
  • 「AIが得意なこと」
  • 「実社会の課題」

この3つを結びつけ、量子技術がビジネスで実際に使える世界をつくることを目的としています。

🧪 G‑QuATでの主な取り組み

G‑QuATセンターでは、以下のような研究・実証プロジェクトが進められています:

  • 量子アルゴリズムの開発・評価 製薬、物流、金融など各業界の問題に対応した、実用的な量子アルゴリズムを開発。
  • 量子AI(Quantum Machine Learning)の実証 AIでは処理が困難な高次元データを、量子の力で分析・最適化する研究。
  • 産業連携による応用フィールドテスト 民間企業との協業で、量子技術を実際の業務課題に適用し、成果を検証。
  • 次世代人材の育成と知識共有 量子・AI・情報工学にまたがる専門人材を育てる教育プログラムも検討。

🧠 公的研究機関の「本気」がうかがえる拠点

AIST(産業技術総合研究所)は、日本最大級の公的研究機関であり、これまでロボティクス、AI、素材科学などさまざまな分野でイノベーションを生み出してきました。

そのAISTが設立したG‑QuATは、単なる研究室ではなく、「量子技術を産業に役立てる」ための実証環境=社会実装の最前線です。今回のような巨大な量子制御システムの導入は、その本気度を象徴する出来事だと言えるでしょう。

🤝 産学官の連携拠点としての期待

G‑QuATでは、国内外の企業や大学、他の研究機関との連携が進められており、今後は次のような役割も期待されています:

  • 国内産業界が量子技術にアクセスしやすくなる「共有実験施設」
  • スタートアップ支援やPoC(実証実験)のためのテストベッド
  • 国際的な標準化や安全性ガイドラインづくりの中心地

量子分野における日本の競争力を保ちつつ、世界の中で実装力を示す拠点として、重要な役割を果たしていくことになるでしょう。

量子は「使う時代」へ

これまで、量子コンピュータという言葉はどこか遠い未来の技術として語られてきました。「理論的にはすごいけれど、まだ実用には程遠い」と思っていた人も多いかもしれません。確かに、数年前まではそれも事実でした。しかし今、私たちはその認識を改めるべき時を迎えています。

今回、日本のG‑QuATセンターに導入された世界最大級の量子制御システムは、量子コンピュータが「使える技術」へと進化していることをはっきりと示す出来事です。単なる研究用途ではなく、社会や産業の中で実際に応用するための土台が、現実のかたちとして整備され始めているのです。

このシステムは、1,000を超える量子ビットを同時に制御できるという、世界でも前例のない規模を誇ります。しかし、それ以上に重要なのは、この装置が「産業応用」にフォーカスした拠点に設置されたという点です。

製薬、金融、物流、エネルギーといった、社会の基盤を支える分野において、すでに量子技術は「現実的な選択肢」として台頭しつつあります。AIと組み合わせることで、これまで人間や従来のコンピュータでは到底処理しきれなかった問題にアプローチできる時代が到来しようとしています。

量子が「社会の裏側」で働く未来へ

私たちが直接量子コンピュータを触る日が来るかは分かりません。けれど、身の回りのあらゆるサービス──医療、交通、買い物、金融、エネルギーなど──が、目に見えないところで量子の力を活用し、よりスマートに、より速く、より最適に動いていく

そのための第一歩が、まさにこの日本の研究拠点から踏み出されたのです。

日本発・量子活用の実証モデル

G‑QuATセンターは、日本における量子コンピューティングの“応用力”を世界に示す存在になろうとしています。技術開発だけでなく、「どう使うか」「どう活かすか」という視点を重視し、産業界とともに進化していく――このスタイルは、量子技術の新たなスタンダードを築く可能性を秘めています。

世界の量子競争は激化していますが、日本はこのような実用化に特化したインフラと連携体制を持つことで、独自の強みを発揮できるはずです。

おわりに:技術が現実になる瞬間を、私たちは目撃している

量子はもはや、学会や論文の中に閉じこもった存在ではありません。現場に入り、現実の問題を解決し、人の生活や産業に貢献する段階に入りつつあります。

「量子コンピュータがいつか役に立つ日が来る」のではなく、「もう使い始められる場所ができた」という事実に、今私たちは立ち会っています。

そしてこの流れの先頭に、G‑QuATセンターという日本の拠点があることは、大きな希望でもあり、誇りでもあります。

📚 参考文献

京都・西陣織 × AI:千年の伝統と最先端技術の出会い

はじめに

西陣織──それは、千年以上にわたり京都で受け継がれてきた日本を代表する伝統織物です。細やかな文様、絢爛たる色彩、そして熟練の技が織りなす芸術作品の数々は、国内外で高く評価されてきました。しかし、現代においてこの伝統工芸も例外ではなく、着物離れや後継者不足といった課題に直面しています。

そのような中、ひとつの新たな試みが注目を集めています。AI──人工知能を西陣織の創作プロセスに取り入れ、未来へとつなげようとする動きです。「伝統」と「最先端技術」、一見すると相容れないように思える両者が、今、京都の小さな工房で手を取り合い始めています。

この取り組みの中心にいるのは、西陣織の織元を受け継ぐ四代目の職人、福岡裕典氏。そして協力するのは、ソニーコンピュータサイエンス研究所(Sony CSL)という、日本でも屈指の先端研究機関です。彼らは、職人の勘や経験だけに頼るのではなく、過去の図案を学習したAIの発想力を借りて、これまでにない模様や配色を生み出すことに挑戦しています。

これは単なるデジタル化ではありません。西陣織という文化遺産を、「保存する」だけではなく、「進化させる」ための挑戦なのです。

AIが織りなす新たな模様

西陣織の世界にAIが導入されるというニュースは、多くの人にとって驚きをもって受け止められたかもしれません。織物という極めて手作業に依存する分野において、AIが果たす役割とは何か──それは「伝統の破壊」ではなく、「伝統の再構築」へのアプローチなのです。

今回のプロジェクトにおいてAIが担っているのは、意匠(デザイン)の創出支援です。AIには、過去の西陣織の図案やパターン、色彩情報など膨大なデータが学習させられており、それをもとに新しい図案を提案します。これまで人の感性や経験に頼っていた意匠の発想に、AIという“異なる視点”が加わることで、従来にはなかったパターンや色の組み合わせが生まれるようになったのです。

実際にAIが提案した図案には、たとえば黒とオレンジを大胆に組み合わせた熱帯風のデザインや、幾何学的な構造の中に自然の葉を抽象的に織り込んだようなものなど、人間の固定観念からはなかなか出てこないような斬新な意匠が多く含まれています。こうした提案に職人たちも「これは面白い」「これまでの西陣織にはなかった視点だ」と驚きを隠しません。

とはいえ、AIの提案が常に優れているわけではありません。時には「的外れ」とも感じられる図案もあるとのことです。だからこそ、最終的なデザインの採用・選定は、職人自身の眼と感性によって判断されるというのが重要なポイントです。あくまでAIはアイデアの触媒であり、創造の出発点にすぎません。

このように、AIによってもたらされた図案の“種”を、職人が選び、磨き、伝統技術の中で咲かせていく。これは、テクノロジーと人間の感性が共創する新しい芸術のかたちともいえるでしょう。

西陣織に限らず、多くの伝統工芸は長年の経験や勘が重視される世界です。しかし、世代交代が進む中で、その経験の継承が難しくなることもしばしばあります。こうした課題に対して、AIが過去の創作を記憶し、体系化し、次世代の職人の学びや創作の足がかりを提供することができれば、それは新たな文化の継承手段として、大きな意義を持つはずです。

人間の眼が選び、手が織る

AIによって生み出された図案の数々は、いわば“可能性の種”です。しかし、それを本当の作品へと昇華させるためには、やはり人間の眼と手の力が不可欠です。西陣織の現場では、AIが提示する複数のデザイン候補から、どの意匠を採用するかを決めるのは、あくまで人間の職人です。

福岡裕典氏は「AIの提案には、面白いものもあれば、そうでないものもある」と率直に語ります。AIは、過去の膨大なデータから類似パターンや新たな組み合わせを導き出すことには長けていますが、それが本当に美しいのか、用途にふさわしいのか、文化的文脈に合っているのか──そういった“美意識”や“場の感覚”は、やはり人間にしか判断できないのです。

さらに、デザインの採用が決まった後には、それを実際の織物として形にする長い工程が待っています。図案に合わせて糸の色を選定し、織りの設計(紋意匠)を行い、織機に反映させて、緻密な手仕事で織り上げていく。このプロセスには、高度な技術と長年の経験に基づく勘が必要とされます。たとえば、糸の太さや織り密度、光の反射の仕方など、微細な要素が仕上がりに大きな影響を与えるため、職人の判断が作品の質を左右します。

AIには“手”がありません。ましてや、“生地に触れたときの質感”や“織り上がったときの感動”を感じ取ることもできません。したがって、AIの提案は「始まり」であり、「完成」は常に人間の手によってもたらされるのです。この役割分担こそが、人間とAIの理想的な協働のかたちだと言えるでしょう。

また、西陣織は単なる工芸品ではなく、日本文化の象徴でもあります。その中には「色の意味」や「四季の表現」、「祝いと祈り」などの精神性が込められており、それらを理解したうえで表現するには、やはり人間の深い文化的知性と情緒が求められます。

つまり、AIがいかに優れた支援者であったとしても、最終的な価値を決めるのは人間の目であり、技術であり、心なのです。そして、それを未来に残すためには、AIという新しいツールを受け入れながらも、人間の感性と技術を手放さないという、バランス感覚が求められています。

西陣織の未来:工芸からテクノロジーへ

西陣織は、もともと高度な設計と技術に支えられた工芸です。図案から織りの設計へ、そして実際の製織工程まで、膨大な工程が精密に組み合わさって初めて1点の作品が完成します。その意味で、西陣織は「手仕事の集合体」であると同時に、一種の総合的な“システムデザイン”の結晶とも言えます。

その西陣織が、いまAIという新たなテクノロジーと接続されることで、単なる工芸の枠を超えた進化を遂げようとしています。デザイン支援に加え、今後は製造工程や品質管理、販路開拓といったさまざまな段階でのAI活用も視野に入っています。

たとえば、色合わせの最適化や織りムラ・糸切れの検出など、これまで職人の「目」と「経験」に依存してきた工程に、画像認識AIやセンサー技術を導入することで、製造精度と生産効率の向上が期待されています。また、顧客ごとにパーソナライズされた意匠の提案や、3Dシミュレーションを通じた着物の試着体験など、体験型DX(デジタルトランスフォーメーション)も新たな収益モデルを支える仕組みとして注目されています。

さらに注目すべきは、西陣織の技術そのものを異分野に展開する試みです。たとえば、極細糸を高密度で織る技術は、軽量で高強度な素材として航空機部品や釣り竿などに応用され始めています。これは、伝統技術が“文化財”として保存されるだけでなく、現代社会の産業技術として再評価される兆しでもあります。

また、観光・教育分野との融合も進んでいます。西陣地区では、訪問者が自らデザインした柄をAIと一緒に生成し、それを実際にミニ織機で体験できるといった“テクノロジーと文化体験の融合”が新たな地域価値として提案されています。このような試みは、若い世代に伝統への関心を喚起するだけでなく、グローバルな観光コンテンツとしての魅力も持っています。

つまり、未来の西陣織は「伝統工芸」としての側面だけでなく、「素材工学」「体験デザイン」「観光資源」としても多面的に活用される可能性を秘めているのです。技術革新を恐れず、伝統の中に変化の芽を見出す──それが、21世紀の西陣織の新しい姿だと言えるでしょう。

おわりに:AIが開く「保存ではなく進化」の道

伝統とは、単に過去をそのまま残すことではありません。時代の変化に応じて形を変えながらも、本質的な価値を保ち続けることこそが「生きた伝統」なのです。西陣織とAIの融合は、その象徴的な事例といえるでしょう。

AIの導入によって、西陣織の制作現場は「効率化」されたのではなく、むしろ新たな創造の可能性を獲得しました。人間が蓄積してきた美意識と技術を、AIが“異なる視点”から補完し、それに人間が再び向き合うという、対話的な創作プロセスが生まれたのです。これは、伝統を一方向に守るだけの姿勢ではなく、未来に向けて開かれた「創造的継承」の形です。

また、この取り組みは単に西陣織の存続だけを目的としたものではありません。テクノロジーとの共存を通じて、西陣織が社会の新たな役割を担える存在へと脱皮しようとしていることにこそ、大きな意義があります。素材開発や体験型観光、教育、さらにはグローバル市場での再評価など、伝統工芸の活躍の場はかつてないほど広がっています。

一方で、「AIが職人の仕事を奪うのではないか」という不安の声もあります。しかし、今回の西陣織の事例が示すように、AIはあくまで“道具”であり、“代替”ではありません。価値を判断し、感性を働かせ、手を動かして形にするのは、やはり人間です。その構造が崩れない限り、職人の存在意義が揺らぐことはありません。

むしろ、AIという新しい“仲間”が現れたことで、職人が今まで以上に自らの技や感性の意味を問い直し、より高次の創作へと向かうきっかけになるかもしれません。それは、伝統工芸にとっても、テクノロジーにとっても、希望に満ちた未来の形です。

今、伝統とテクノロジーの間にある壁は、確実に低くなっています。大切なのは、その境界を恐れるのではなく、そこに立って両者をつなぐ人間の役割を見失わないこと。西陣織の挑戦は、日本の他の伝統産業、そして世界中の地域文化に対しても、多くのヒントを与えてくれるはずです。

保存か、革新か──その二択ではなく、「保存しながら進化する」という第三の道。その先にある未来は、職人とAIが手を取り合って織り上げる、まだ誰も見たことのない“新しい伝統”なのです。

参考文献

  1. Tradition meets AI in Nishijinori weaving style from Japan’s ancient capital
    https://apnews.com/article/japan-kyoto-ai-nishijinori-tradition-kimono-6c95395a5197ce3dd97b87afa6ac5cc7
  2. 京都の伝統「西陣織」にAIが融合 若き4代目職人が挑む未来への布石(Arab News Japan)
    https://www.arabnews.jp/article/features/article_154421/
  3. AI×西陣織:伝統工芸とテクノロジーが織りなす未来とは?(Bignite/Oneword)
    https://oneword.co.jp/bignite/ai_news/nishijin-ori-ai-yugo-kyoto-dento-kogei-saishin-gijutsu-arata/
  4. Nishijin Textile Center: A Journey Into Kyoto’s Textile Heritage(Japan Experience)
    https://www.japan-experience.com/all-about-japan/kyoto/museums-and-galleries/nishijin-textile-center-a-journey-into-kyotos-textile-heritage
  5. Kyoto trading firm uses digital tech to preserve traditional crafts(The Japan Times)
    https://www.japantimes.co.jp/news/2025/06/27/japan/kyoto-trading-firm-preserves-traditional-crafts/
  6. [YouTube] AI Meets Kyoto’s Nishijin Ori Weaving | AP News
    https://www.youtube.com/watch?v=s45NBrqSNCw

スーパーコンピュータ「ABCI 3.0」正式稼働──日本のAI研究を支える次世代インフラ

2025年1月、国立研究開発法人 産業技術総合研究所(AIST)が運用するスーパーコンピュータ「ABCI 3.0」が正式に稼働を開始しました。

その圧倒的な計算性能と柔軟なクラウドアクセス性を備えたこの新しいAIインフラは、日本のAI開発と産業応用を支える基盤として、今後ますます注目を集めていくことになるでしょう。

AI特化型スーパーコンピュータの最新進化

ABCI 3.0は、AI開発に特化した次世代スーパーコンピュータとして、これまでのABCIシリーズを大幅に凌駕する性能を備えています。とくに深層学習や生成AI、大規模マルチモーダルAIの訓練と推論に最適化された設計が特徴です。

最大の強みは、NVIDIA最新GPU「H200 Tensor Core」を6,128基搭載している点です。これにより、FP16(半精度浮動小数点)では最大6.22エクサフロップス(EFLOPS)という世界最高クラスのAI計算性能を達成しています。

また、各計算ノードには高性能なCPUと大容量のメモリが搭載され、GPU間やノード間の通信もInfiniBand NDR 200Gbpsによって高速かつ低遅延で実現されています。ストレージには全フラッシュ型75PBが用意されており、大規模データセットをストレスなく扱うことが可能です。

こうした構成により、ABCI 3.0は単なる数値計算用スーパーコンピュータを超え、次世代AI研究と産業活用を同時に支える「AIインフラ」としての役割を担っています。

ABCI 2.0とのスペック比較

項目ABCI 2.0ABCI 3.0向上点
稼働開始2021年2025年
GPUNVIDIA A100(4,352基)NVIDIA H200(6,128基)約1.4倍+世代更新
GPUメモリ40GB(A100)141GB(H200)約3.5倍の容量
FP16性能約0.91 EFLOPS約6.22 EFLOPS約6.8倍
CPUIntel Xeon Gold 6248 ×2Xeon Platinum 8558 ×2世代更新・高密度化
ノード数約544台766台約1.4倍
メモリ容量384GB/ノード2TB/ノード約5.2倍
GPU間通信NVLink 3.0NVLink 4+NDR InfiniBand高速化+低遅延化
ストレージ32PB HDD+一部SSD75PB オールフラッシュ高速化・容量拡張
ネットワークInfiniBand HDRInfiniBand NDR 200Gbps世代更新+帯域UP

ABCI 3.0の性能向上は、単なる数値的なスペックアップにとどまらず、生成AIや大規模LLMの研究を日本国内で自律的に進められるレベルへと引き上げた点にこそ意味があります。

これにより、国内の研究者や企業が、海外クラウドに依存せずに先端AIを育てる環境が整いつつあります。これは、今後の日本の技術主権(AIソブリンティ)を考えるうえでも非常に大きな一歩です。

何のために作られたのか?──ABCI 3.0の使命

ABCI 3.0は、単なる計算機の置き換えや性能向上を目的としたプロジェクトではありません。その本質は、日本におけるAI研究・開発の「基盤自立性」と「国家的競争力の強化」を支える次世代インフラを構築することにあります。

とくにここ数年で、生成AIの急速な進化とそれを牽引する海外プラットフォーマー(OpenAI、Google、Metaなど)の存在感が高まったことで、AI研究環境の国内整備とアクセス可能性が強く求められるようになってきました。ABCI 3.0は、こうした背景を受けて、日本のAI研究者・技術者・起業家が国産の計算資源で自由に開発を行える環境を提供するために構築されました。

政策的背景と位置づけ

ABCI 3.0は、経済産業省の「生成AI基盤整備事業」に基づいて推進された国家プロジェクトの一環であり、AI技術の社会実装・商用利用に直結する研究開発を支える「オープンで中立的な計算インフラ」として設計されています。

民間クラウドは性能・スケーラビリティに優れる一方で、利用コストやデータの主権、技術的制約(例:独自チップの使用制限、API封鎖)などの課題があります。ABCI 3.0は、こうした制約から解放された「自由に使える公的GPUスーパーコンピュータ」という点で、非常にユニークな存在です。

研究・産業界のニーズに応える汎用性

ABCI 3.0は、次のような広範なニーズに対応しています:

  • 生成AI・大規模言語モデル(LLM)の訓練・チューニング → 日本語コーパスを活用したローカルLLMの開発や、企業内モデルの学習に活用可能
  • マルチモーダルAIの研究 → 画像・音声・テキスト・3Dデータなど、複数のデータ形式を統合したAI処理(例:ビデオ理解、ヒューマンロボットインタラクション)
  • AI×ロボティクスの連携 → ロボットの動作学習や環境シミュレーション、デジタルツイン構築に活用される大規模並列処理
  • 製造業・素材産業でのAI応用 → 材料探索、工程最適化、異常検知など、従来型のCAEやシミュレーションとの融合によるAI駆動設計支援
  • 公共分野への応用 → 災害予測、都市計画、社会インフラの保守計画など、社会課題解決に向けた大規模データ処理

こうした幅広い応用可能性は、ABCI 3.0が単なる「計算機」ではなく、AIの社会実装のための共有プラットフォームとして設計されていることを物語っています。

教育・スタートアップ支援の側面

ABCI 3.0の利用対象は、国立大学・研究所だけに限定されていません。中小企業、スタートアップ、さらには高専や学部生レベルの研究者まで、広く門戸が開かれており、利用申請に通ればGPUリソースを安価に利用可能です。

これは、AI開発の「民主化」を進めるための重要な試みであり、新しい人材・アイデアの創出を支える基盤にもなっています。

国家の“AI主権”を支える存在

ABCI 3.0は、日本がAI技術を持続的に発展させ、他国依存から脱却するための“戦略的装置”でもあります。

たとえば、商用クラウドが規制や契約変更で利用できなくなると、開発そのものが停止する恐れがあります。そうした「計算資源の地政学リスク」に備え、国内で運用され、安定供給されるABCI 3.0の存在は極めて重要です。

ABCI 3.0は、スペックだけでなく、「誰のための計算機か?」「何を可能にするか?」という視点で見たときに、その意義がより明確になります。

日本の技術者・研究者が、自由に、かつ安心してAIと向き合える土壌を提供する──それがABCI 3.0の真の使命です。

ABCI 3.0の活用事例

ABCI 3.0は単なる“性能重視のスパコン”ではありません。現在も稼働中で、さまざまな分野の先駆的なプロジェクトが実際に成果を挙げています。ここでは、既に実用化されている活用事例を中心に紹介します。

◆ 1. 大規模言語モデル(LLM)構築支援

  • 株式会社Preferred Networks(PFN)は、ABCI 3.0を活用して日本語特化型LLMの開発を推進しています。第1回の「大規模言語モデル構築支援プログラム」で採択され、PLaMo・ELYZAといった日本語LLMを構築中です  。
  • 多様なスタートアップや大学によるLLM研究も支援されており、ABCI 3.0はまさに「LLMの実験室」として機能しています。

◆ 2. 自動運転・物流AI

  • 株式会社T2は、物流向け自動運転技術の開発にABCI 3.0を活用。大量の走行データ処理と強化学習により、新たな物流インフラ構築を目指しています  。

◆ 3. 音声認識AI/コミュニケーションAI

  • RevCommは、音声認識AIシステムをABCI上で開発し、営業通話の分析やリアルタイムアシスタント機能を実現しています  。

◆ 4. 社会インフラ/災害予測

  • 三菱重工業は、倉庫内のフォークリフトなど産業車両の安全運転支援AIを開発。カメラ映像のリアルタイム処理にABCIを使用しています  。
  • JAEA(日本原子力研究開発機構)は放射性物質拡散予測シミュレーションをリアルタイムで実行中。以前は数百GPU必要だった処理が、ABCI 3.0では60 GPU単位で高速実行できるようになりました  。

◆ 5. 材料開発・地震工学・流体シミュレーション

  • 前川製作所は、食肉加工機械の画像認識AIを構築し、骨検出の自動化を推進  。
  • 地震工学研究では、前身の「京」と比較して10倍に及ぶ高速CPU処理を実現し、数億メッシュの解析を可能にしています  。
  • AnyTech社は、流体挙動を動画解析AI「DeepLiquid」でモデリング。流体の可視化・最適化にABCIを活用  。

◆ 6. 産業界全般での導入

  • Panasonicは材料開発・自動運転用画像認識など多岐にわたる研究にABCIを活用。また独自セキュリティ基盤の構築にも言及し、高い評価を得ています  。
  • 富士通研究所はResNet-50による画像認識タスクで世界最速学習を達成。ABCIでは、最大24時間にわたって全ノードを占有するチャレンジプログラムも提供されています  。

スーパーコンピューティング環境

近年、生成AIや深層学習の需要増加にともない、GPUクラウドの利用が急速に普及しています。しかし、商用クラウドは万能ではなく、研究開発においては「コスト」「自由度」「一貫性」など多くの課題が存在します。

ABCI 3.0は、こうしたクラウドの制約を乗り越えるために設計された、“本物のスーパーコンピューティング環境”です。

◆ 高性能かつ一貫した計算環境

商用クラウドでは、同一インスタンスであっても物理ノードやリージョンによって性能に差が出ることがあります。一方でABCI 3.0は、統一されたハードウェア構成(全ノード:H200 ×8、DDR5 2TB、InfiniBand NDR)を持ち、ノード間の性能差が事実上ゼロという特性があります。

  • 高精度なベンチマーク比較が可能
  • ノード数を増やしても再現性が高い
  • ハードウェアの世代が完全に統一されているため、アルゴリズム検証や精密なスケーリング実験に最適

◆ 超低レイテンシ&高帯域なネットワーク構成

一般的なクラウドはEthernetベースの通信であり、ノード間のレイテンシや帯域は用途によって大きく変動します。

ABCI 3.0では、InfiniBand NDR(200Gbps ×8ポート/ノード)により、GPU同士、ノード同士の通信が極めて高速・安定しています。

この点が特に重要になるのは以下のような用途です:

  • 分散学習(Data Parallel/Model Parallel)
  • 3Dシミュレーションや流体解析のようなノード連携が重視される処理
  • グラフニューラルネットワーク(GNN)など通信集約型AIタスク

◆ ロックインなしのフルコントロール環境

クラウドでは提供事業者の仕様やAPIに依存した設計を強いられがちですが、ABCI 3.0はLinuxベースの完全なオープン環境であり、以下のような自由度が確保されています:

  • Singularity/Podmanによる自前コンテナの持ち込み可能
  • MPI/Horovod/DeepSpeedなどの独自ライブラリ構成が可能
  • ソフトウェア環境の切り替え・ビルド・環境構築が自由自在
  • 商用ライセンスの不要なOSSベースのスタックに特化(PyTorch, JAX, HuggingFace等)

◆ コスト構造の透明性と安定性

パブリッククラウドでは、GPUインスタンスが高騰しがちで、価格も時間単位で変動します。

ABCI 3.0では、利用料金が定額かつ極めて安価で、研究開発予算の予測が立てやすく、長期的な利用にも向いています。

  • GPU 8基ノードを使っても1時間数百円~1000円程度
  • 年度ごとの予算申請・利用時間枠の確保も可能(大学・研究機関向け)
  • 審査制である代わりに、営利利用よりも基礎研究向けに優遇された制度になっている

◆ セキュリティとガバナンスの安心感

ABCI 3.0は、政府機関の研究インフラとして設計されており、セキュリティ面も高水準です。

  • SINET6を通じた学術ネットワーク経由での閉域接続
  • 研究用途の明確な審査フローとログ管理
  • 商用クラウドと異なり、データの国外移転リスクやプロバイダ依存がない

研究・教育・公共データなど、扱う情報に高い安全性が求められるプロジェクトにおいても安心して利用できます。

◆ クラウド的な使いやすさも両立

ABCI 3.0は、伝統的なスパコンにありがちな「難解なCLI操作」だけでなく、WebベースのGUI(Open OnDemand)によるアクセスも可能です。

  • ブラウザからジョブ投入/モニタリング
  • ファイル操作やコード編集もGUIで可能
  • GUIからJupyterLabを立ち上げてPython環境にアクセスすることもできる

これにより、スパコンを使い慣れていない学生・エンジニアでも比較的スムーズに高性能な環境にアクセス可能です。

研究と産業の“橋渡し”を担う環境

ABCI 3.0は、パブリッククラウドのスケーラビリティと、スパコンならではの「統一性能・高速通信・自由度・安心感」を両立する、まさに“スーパーな研究開発環境”です。

  • 自前でGPUインフラを持てない研究者・中小企業にとっては「開発の起点」
  • クラウドの仕様に縛られない自由な実験環境として「検証の場」
  • 官学民の連携を促進する「AI開発の公共インフラ」

日本のAI技術が「海外依存」から一歩抜け出すための自立した基盤として、ABCI 3.0は今後さらに活用が進むことが期待されています。

日本のAI研究を“自立”させる鍵に

近年、生成AIや大規模言語モデル(LLM)の急速な発展により、AIの主戦場は米国を中心とする巨大テック企業のクラウドインフラ上へと移行しました。OpenAI、Google、Meta、Anthropic、xAIなどが次々と数千億円単位のGPUインフラを敷設し、それらを活用して世界規模のLLMやマルチモーダルモデルを次々と開発しています。

一方で、日本のAI研究者や企業にとって最大の課題は、それに対抗し得る計算資源を国内で持てていないことでした。

ハードウェアがなければ、モデルは育てられず、データがあっても訓練できない。優れた人材やアイデアがあっても、それを試す場がない──この「計算資源の格差」こそが、日本のAI研究の足かせとなっていたのです。

◆ 技術主権を支える「国産GPUインフラ」

ABCI 3.0は、こうした状況を打破するために構築された日本初の本格的な公的GPUスーパーコンピュータ基盤です。

6,000基を超えるNVIDIA H200 GPUを有し、FP16で6エクサフロップスを超える性能は、世界の研究機関においてもトップレベル。これは、もはや“スパコン”という枠を超え、AIソブリンインフラ(主権的インフラ)とも呼べる存在です。

  • 日本語特化型LLMの開発(例:ELYZA, PLaMo)
  • 商用クラウドを使えない安全保障・エネルギー・医療研究の推進
  • 海外規制や契約変更による「クラウドリスク」からの脱却

このようにABCI 3.0は、日本がAI開発を他国の都合に左右されず、持続的に推進していくための基盤として機能しています。

◆ “借りる”から“作る”へ──AIの自給自足体制を支援

現在、日本国内で使われているAIモデルの多くは、海外で訓練されたものです。LLMでいえばGPT-4やClaude、Geminiなどが中心であり、日本語特化型モデルの多くも、ファインチューニングにとどまっています。

この状況から脱するには、ゼロから日本語データでAIモデルを訓練する力=計算資源の独立性が不可欠です。

ABCI 3.0はこの点で大きな貢献を果たしており、すでに国内の複数の大学・企業が数百GPU単位での学習に成功しています。

  • 公的研究機関では日本語LLMをゼロから学習(例:Tohoku LLM)
  • スタートアップがGPT-3.5クラスのモデルを国内で育成
  • 医療・法務・金融などドメイン特化型モデルの国産化も進行中

これらは「国産AIモデルの種」を自国でまくための第一歩であり、AIの自立=自国で学び、作り、守る体制の確立に向けた重要な土台となっています。

◆ 単なる「スパコン」ではなく「戦略資産」へ

ABCI 3.0の真価は、その性能だけにとどまりません。

それは、日本がAI領域において独立した意思決定を持つための国家戦略装置であり、研究・教育・産業を横断する「AI主権」の要といえる存在です。

  • 政策的にも支援されており、経済産業省の生成AI戦略の中核に位置付け
  • 内閣府、文部科学省などとの連携による「AI人材育成」「スタートアップ支援」にも波及
  • 自衛隊や官公庁による安全保障・災害対応シミュレーション等への応用も視野

つまり、ABCI 3.0は、日本のAI研究を“研究者の自由”にゆだねつつ、その研究が国益としてつながる回路を構築しているのです。

ABCIは「未来を試せる場所」

「誰かが作ったAIを使う」のではなく、「自分たちでAIを作り出す」。

その挑戦を支える自由で高性能な環境こそが、ABCI 3.0です。

日本のAI研究がこの先、単なる技術追従から脱し、独自の思想・倫理・目的を持ったAI開発へと踏み出すためには、こうした自立したインフラが不可欠です。

ABCI 3.0は、そうした“未来を試す場所”として、すでに動き出しています。

おわりに

ABCI 3.0は、単なる高性能なスーパーコンピュータではありません。それは、日本のAI研究と産業界がこれからの未来に向けて自立した技術基盤を築くための“共有財”です。国内の研究者・技術者・起業家たちが、自らのアイデアや知見を最大限に試せる環境。そこには、これまで「計算資源が足りない」「クラウドコストが高すぎる」といった制約を超えて、自由に創造できる可能性が広がっています。

私たちが目の当たりにしている生成AIやマルチモーダルAIの進化は、もはや一部の巨大テック企業だけのものではありません。ABCI 3.0のような公共性と性能を兼ね備えたインフラが存在することで、日本からも世界レベルの革新が生まれる土壌が整いつつあるのです。

また、このような環境は単なる“研究のための場”にとどまりません。材料開発や自動運転、災害対策、医療・介護、ロボティクスなど、私たちの暮らしに直結する領域にも大きな変革をもたらします。ABCI 3.0は、そうした社会課題解決型AIの開発現場としても極めて重要な役割を担っています。

そしてなにより注目すべきは、これが一部の限られた人だけでなく、広く社会に開かれているということです。大学や研究所だけでなく、スタートアップ、中小企業、そしてこれからAIに挑戦しようとする学生たちにも、その扉は開かれています。

AIの未来を自分たちの手で切り拓く。

ABCI 3.0は、その第一歩を踏み出すための力強い味方です。

日本のAIは、いま“依存”から“自立”へ。

そして、そこから“創造”へと歩みを進めようとしています。

参考文献

6Gはどこまで来ているのか──次世代通信の研究最前線と各国の動向

6G時代の幕開け──次世代通信の姿とその最前線

はじめに

2020年代も半ばに差し掛かる今、次世代の通信インフラとして注目されているのが「6G(第6世代移動通信)」です。5Gがようやく社会実装され始めた中で、なぜすでに次の世代が注目されているのでしょうか?この記事では、6Gの基本仕様から、各国・企業の取り組み、そして6Gに至る中間ステップである5.5G(5G-Advanced)まで解説します。

6Gとは何か?

6Gとは、2030年前後の商用化が期待されている次世代の無線通信規格です。5Gが掲げていた「高速・大容量」「低遅延」「多数同時接続」といった特徴をさらに拡張し、人間とマシン、物理空間とサイバースペースをより密接に接続することを目指しています。

6Gで目指されている性能は、次のようなものです:

  • 通信速度:最大1Tbps(理論値)
  • 遅延:1ミリ秒以下、理想的には1マイクロ秒台
  • 接続密度:1平方キロメートルあたり1000万台以上の機器
  • 信頼性:99.99999%以上
  • エネルギー効率:10〜100倍の改善

こうした性能が実現されれば、単なるスマートフォンの進化にとどまらず、医療、製造業、教育、エンタメ、交通など、あらゆる分野に革命的変化をもたらします。

通信規格の進化比較

以下に、3Gから6Gまでの進化の概要を比較した表を掲載します。

世代主な特徴最大通信速度(理論値)遅延主な用途
3G音声とデータの統合通信数Mbps数百ms携帯ブラウジング、メール
4G高速データ通信、IPベース数百Mbps〜1Gbps10〜50ms動画視聴、VoIP、SNS
4.5GLTE-Advanced、MIMOの強化1〜3Gbps10ms以下高解像度動画、VoLTE
5G超高速・低遅延・多接続最大20Gbps1ms自動運転、IoT、AR/VR
6Gサブテラヘルツ通信、AI統合最大1Tbps0.1〜1μs仮想現実、遠隔医療、空中ネットワーク

各国・各社の取り組み

6Gはまだ規格化前の段階にあるとはいえ、世界中の企業や政府機関がすでに研究と実証を進めています。

日本:ドコモ、NTT、NEC、富士通

日本ではNTTとNTTドコモ、NEC、富士通などが中心となって、100〜300GHz帯のサブテラヘルツ領域での実証実験を進めています。2024年には100Gbpsを超える通信を100mの距離で成功させるなど、世界でも先進的な成果が出ています。

また、ドコモは海外キャリア(SKテレコム、AT&T、Telefonica)やベンダー(Nokia、Keysight)とも連携し、グローバル標準化を見据えた実証に取り組んでいます。

米国・欧州:Nokia、Ericsson、Qualcomm

NokiaはBell Labsを中心に、AIネイティブなネットワークアーキテクチャとサブテラヘルツ通信の研究を進めています。米ダラスでは7GHz帯の基地局実験をFCCの承認を得て展開しています。

EricssonはAI-RAN Allianceにも参加し、AIによる基地局制御の最適化やネットワークの消費電力削減に注力しています。

Qualcommは6G対応チップの開発ロードマップを発表しており、スマートフォン向けに限らず、IoT・自動運転・XR(拡張現実)などあらゆる領域を視野に入れています。

韓国・中国:Samsung、Huawei、ZTE

Samsungは韓国国内で、140GHz帯を用いたビームフォーミングの実証を進めており、6G研究センターも設立済みです。

Huaweiは政治的な制約を抱えつつも、6G関連技術の論文や特許の数では世界トップクラス。中国政府も国家戦略として6G研究を推進しており、すでに実験衛星を打ち上げています。

5.5G(5G-Advanced):6Gへの橋渡し

5.5Gとは、3GPP Release 18〜19で規定される「5Gの進化形」であり、6Gに至る前の中間ステップとされています。Huaweiがこの名称を積極的に使用しており、欧米では”5G-Advanced”という呼び名が一般的です。

特徴

  • 通信速度:下り10Gbps、上り1Gbps
  • 接続密度:1平方kmあたり数百万台規模
  • 遅延:1ms以下
  • Passive IoTへの対応(安価なタグ型通信機器)
  • ネットワークAIによる最適化

なぜ5.5Gが必要か

5Gは標準化はされているものの、国や地域によって展開の度合いに差があり、ミリ波や超低遅延といった機能は実用化が進んでいない部分もあります。5.5Gはこうした未達成領域をカバーし、真の5G性能を提供することを目的としています。

また、5.5Gは次世代のユースケース──自動運転の高精度化、インダストリー4.0、メタバース通信、XR技術の普及──を支えるための実践的な基盤にもなります。

まとめと今後の展望

6Gは単なる通信速度の高速化ではなく、現実空間と仮想空間を融合し、AIと共に動作する次世代の社会インフラです。ドローンの群制御、遠隔外科手術、クラウドロボティクス、空中ネットワーク(HAPSや衛星)、そして通信とセンシングが統合された世界──こうした未来が実現するには、まだ多くの研究と実験が必要です。

その橋渡しとして、5.5Gの実装と普及が極めて重要です。Release 18/19の標準化とともに、2025年〜2028年にかけて5.5Gが本格導入され、その後の2030年前後に6Gが商用化される──というのが現実的なロードマップです。

日本企業はNEC・富士通・NTT系を中心に研究で存在感を示していますが、今後はチップセットやアプリケーションレイヤーでも世界市場を狙う戦略が求められるでしょう。

用語解説

  • 6G(第6世代移動通信):2030年ごろ商用化が期待される次世代通信規格。超高速・超低遅延・高信頼性が特徴。
  • 5G-Advanced(5.5G):5Gの中間進化版で、6Gの前段階に当たる通信規格。速度や接続性能、AI対応などが強化されている。
  • サブテラヘルツ通信:100GHz〜1THzの高周波帯域を使う通信技術。6Gの主要技術とされる。
  • ミリ波:30GHz〜300GHzの周波数帯。5Gでも使われるが6Gではより高い周波数が想定されている。
  • Passive IoT:自身で電源を持たず、外部からの信号で動作する通信機器。非常に低コストで大量導入が可能。
  • ビームフォーミング:電波を特定方向に集中的に送信・受信する技術。高周波帯での通信品質を高める。
  • ネットワークAI:通信ネットワークの構成・制御・運用をAIが最適化する技術。
  • AI-RAN Alliance:AIと無線ネットワーク(RAN)の統合を進める国際アライアンス。MicrosoftやNvidia、Ericssonなどが参加。

参考文献

iPhoneがマイナンバーカードに:6月24日からスマホで行政手続きが可能に

iPhoneでマイナンバーカードが利用可能に

デジタル庁は、2025年6月24日より、iPhoneにマイナンバーカード機能を搭載するサービスを開始します。

これにより、iPhoneのApple Walletにマイナンバーカードを追加し、以下のような行政サービスをスマートフォンだけで利用できるようになります:

  • マイナポータルへのログインや電子署名
  • 住民票や印鑑登録証明書などのコンビニ交付サービス
  • 医療費や年金記録の確認、引越し手続きなど

これらの機能は、iPhoneの生体認証(Face IDやTouch ID)を活用して、パスワード入力なしで安全に利用できます。

7月から対面での本人確認も可能に

2025年7月中には、「マイナンバーカード対面確認アプリ」のiOS版が提供され、iPhoneを使った対面での本人確認が可能になります。

これにより、携帯電話の契約や銀行口座の開設など、これまで物理的なマイナンバーカードが必要だった場面でも、iPhoneだけで本人確認が完了するようになります。

今後の展開:マイナ保険証やマイナ免許証への対応

デジタル庁は、2025年9月頃を目処に、iPhoneを健康保険証として利用できる「マイナ保険証」機能の導入を予定しています。

また、運転免許証との一体化を図る「マイナ免許証」についても、警察庁と連携して早期実現に向けた検討が進められています。

モバイルバージョンを終了