中国、Nvidiaチップ使用規制を拡大 ― 米中双方の思惑と台湾への影響

はじめに

近年のテクノロジー分野において、半導体、特にGPUは単なる計算資源にとどまらず、国家の競争力を左右する戦略的インフラ としての性格を強めています。GPUはディープラーニングや大規模言語モデルの学習をはじめとするAI研究に不可欠であり、軍事シミュレーションや監視システム、暗号解読などにも活用されることから、各国の安全保障に直結しています。そのため、供給をどこに依存しているかは、エネルギー資源や食料と同様に国家戦略の根幹に関わる問題となっています。

こうした中で、米国と中国はGPUをめぐり、互いに規制と対抗措置を強めています。米国は2022年以降、先端半導体の対中輸出規制を段階的に拡大し、中国による軍事転用や先端AI技術の加速を抑え込もうとしています。一方の中国は、外資への依存が国家の弱点となることを強く認識し、国内産業を守る名目で外国製GPUの使用を制限し、国産チップへの転換を推進しています。つまり、米国が「供給を遮断する側」として行動してきたのに対し、中国は「利用を制限する側」として自国の戦略を具体化させつつあるのです。

2025年9月には、中国政府が国内大手テック企業に対してNvidia製GPUの使用制限を通達したと報じられました。この動きは、単なる製品選択の問題ではなく、GPUという資源の国家安全保障上の位置づけを示す象徴的事例 といえます。本記事では、中国と米国がそれぞれ進めている規制政策とその背景を整理し、両国の方針と意図を比較したうえで、GPUが戦略資源化していること、そして台湾海峡における地政学的緊張との関連性について考察します。

中国によるNvidiaチップ使用規制の拡大

2025年9月、中国のサイバー行政管理局(CAC)はAlibabaやByteDanceなどの大手テクノロジー企業に対し、Nvidia製の一部GPUの利用を制限するよう求めたと報じられました。対象とされたのは「RTX Pro 6000D」や「H20」など、中国市場向けにカスタマイズされたモデルです。これらは本来、米国の輸出規制を回避するために性能を抑えた仕様で設計されたものでしたが、中国当局はそれすらも国家安全保障上の懸念を理由に利用制限を指示したとされています【FT, Reuters報道】。

特に「H20」は、米国の規制強化を受けてNvidiaが中国向けに開発した代替GPUであり、A100やH100に比べて演算性能を制限した設計となっていました。しかし中国政府は、外国製GPUへの依存そのものをリスクとみなし、国内での大規模利用を抑制する方向に舵を切ったとみられます。Bloomberg報道によれば、既に導入済みの案件についても停止や縮小が求められ、計画中のプロジェクトが白紙化されたケースもあるといいます。

中国がこのような強硬策を取る背景には、いくつかの要因が指摘されています。第一に、国産半導体産業の育成 です。Cambricon(寒武紀科技)やEnflame(燧原科技)などの国内メーカーはAIチップの開発を進めていますが、依然として性能やエコシステムの面でNvidiaに遅れを取っています。その差を埋めるには政府の強力な需要誘導が必要であり、外資製品を制限して国産シェアを確保することは、産業政策上の合理的手段と考えられます。

第二に、情報セキュリティ上の懸念 です。中国当局は、米国製GPUを国家基盤システムに導入することが「バックドア」や「供給遮断」のリスクにつながると警戒しており、外国製半導体を戦略的に排除する方針を強めています。特にAI向けGPUは軍事転用可能性が高く、外資依存が「国家安全保障上の脆弱性」と見なされています。

第三に、外交・交渉上のカード化 です。米国が輸出規制を繰り返す一方で、中国が「使用制限」を宣言することは、国際交渉において対抗措置の一環となります。自国市場を盾に外国企業への圧力を強めることで、交渉上の優位を確保しようとする思惑も読み取れます。

このように、中国によるNvidiaチップ使用規制は単なる製品選択の問題ではなく、産業育成、安全保障、外交戦略の複合的な要因 によって推進されています。そして重要なのは、この措置が米国の輸出規制に対する「受動的な反応」ではなく、むしろ「自立を強化するための能動的な方策」として実施されている点です。

米国による輸出規制の強化

米国は2022年10月に大幅な輸出管理措置を導入し、中国に対して先端半導体および半導体製造装置の輸出を制限する方針を明確にしました。この措置は、AI研究や軍事シミュレーションに用いられる高性能GPUを含む広範な品目を対象とし、米国製チップだけでなく、米国の技術や設計ツールを利用して製造された製品にも及ぶ「外国直接製品規則(FDPR: Foreign-Produced Direct Product Rule)」が適用されています。これにより、台湾TSMCや韓国Samsungといった米国外のメーカーが製造するチップであっても、米国技術が関与していれば中国への輸出は規制対象となりました。

特に注目されたのが、NvidiaのA100およびH100といった高性能GPUです。これらは大規模言語モデル(LLM)の学習や軍事用途に極めて有効であるため、米国政府は「国家安全保障上の懸念がある」として輸出を禁止しました。その後、Nvidiaは規制を回避するために演算性能を抑えた「A800」や「H800」、さらに「H20」など中国市場向けの限定モデルを開発しました。しかし、2023年以降の追加規制により、これらのカスタムGPUも再び制限対象となるなど、規制は段階的に強化され続けています。

また、米国はエンティティ・リスト(Entity List) を通じて、中国の主要な半導体関連企業を規制対象に追加しています。これにより、対象企業は米国製技術や製品を調達する際に政府の許可を必要とし、事実上の供給遮断に直面しました。さらに、軍事関連や監視技術に関与しているとみなされた企業については、輸出許可が原則として認められない「軍事エンドユーザー(MEU)」規制も適用されています。

米国の規制強化は国内外のサプライチェーンにも影響を与えました。NvidiaやAMDにとって、中国は最大級の市場であり、規制によって売上が大きく制約されるリスクが生じています。そのため、米国政府は「性能を落とした製品ならば限定的に輸出を認める」といった妥協策を検討する場面もありました。2025年には、一部報道で「輸出を許可する代わりに売上の一定割合を米国政府に納付させる」案まで取り沙汰されています。これは、完全封鎖による企業へのダメージと、国家安全保障上の懸念のバランスを取ろうとする試みとみられます。

米国の輸出規制の根底には、中国の軍事転用抑止と技術優位の維持 という二つの目的があります。短期的には中国のAI開発や軍事応用を遅らせること、長期的には米国と同盟国が半導体・AI分野で優位に立ち続けることが狙いです。その一方で、中国の国産化努力を加速させる副作用もあり、規制がかえって中国の技術自立を促すという逆説的な効果が懸念されています。

米国の輸出規制は単なる商業的制約ではなく、国家安全保障政策の中核として機能しています。そして、それがNvidiaをはじめとする米国企業の経営判断や研究開発戦略、さらにはグローバルなサプライチェーンに大きな影響を与えているのが現状です。

米中双方の方針と思惑

米国と中国が進めている規制は、ともにGPUを国家安全保障に直結する戦略資源と位置づけている点では共通しています。しかし、そのアプローチは真逆です。米国は「輸出を制限することで中国の技術進展を抑制」しようとし、中国は「外国製GPUの使用を制限することで自国技術の自立化を推進」しようとしています。両国の措置は鏡写しのように見えますが、それぞれに固有の狙いやリスクがあります。

米国は、軍事転用を阻止する安全保障上の理由に加え、自国および同盟国の技術的優位を維持する意図があります。そのため規制は単なる商業政策ではなく、外交・安全保障戦略の一環と位置づけられています。一方の中国は、長期的に米国依存から脱却し、国内半導体産業を育成するために規制を活用しています。中国の規制は、国内市場を保護し、国産企業に競争力を持たせるための「産業政策」としての側面が強く、短期的には性能面での不利を受け入れつつも、長期的な技術主権の確立を優先しているといえます。

こうした構図は、両国の規制が単発の政策ではなく、互いの戦略を補完する「対抗措置」として作用していることを示しています。米国が規制を強化するほど、中国は自立化を加速させ、中国が内製化を進めるほど、米国はさらなる輸出制限で対抗する――その結果、規制と対抗のスパイラル が形成されつつあります。

米中双方の方針と狙いの対比

項目米国の方針中国の方針
主目的中国の軍事転用阻止、技術優位の維持外国依存からの脱却、国産化推進
背景2022年以降の輸出規制強化、同盟国との技術ブロック形成外資依存のリスク認識、国内産業政策の推進
手段輸出規制、性能制限、エンティティ・リスト、FDPR適用外国製GPU使用制限、国内企業への需要誘導、補助金政策
対象高性能GPU(A100/H100など)、製造装置、設計ツールNvidiaのカスタムGPU(H20、RTX Pro 6000Dなど)、将来的には広範囲の外資製品
リスク中国の自立化を逆に加速させる可能性、企業収益の圧迫国産GPUの性能不足、国際的孤立、研究開発遅延
戦略的狙い技術封じ込みと安全保障の担保、同盟国の囲い込み技術主権の確立、交渉カード化、国内市場保護

この表から明らかなように、両国は同じ「規制」という手段を使いつつも、米国は「外へ規制をかける」アプローチ、中国は「内側を規制する」アプローチを取っています。そして、両国の措置はいずれも短期的には摩擦を増大させ、長期的には半導体産業の分断(デカップリング)を進行させています。

また、どちらの政策にも副作用があります。米国の規制はNvidiaやAMDといった自国企業の市場を縮小させ、研究開発投資の原資を奪うリスクを伴います。中国の規制は国内産業の育成に寄与する一方で、国際的な技術水準との差を埋めるまでの間に競争力を損なう可能性を含みます。つまり、両国はリスクを承知しながらも、国家安全保障の優先度がそれを上回っているという構図です。

今回の動きが示すもの

中国のNvidiaチップ使用規制と米国の輸出規制を俯瞰すると、半導体、特にGPUがいかに国家戦略の核心に位置づけられているかが浮き彫りになります。ここから導き出される論点を整理すると、以下の通りです。

1. GPUの戦略資源化

GPUは、AI研究や軍事利用、監視システム、暗号解析といった分野で必須の計算資源となっており、石油や天然ガスに匹敵する「戦略資源」として扱われています。供給が遮断されれば、国家の産業政策や安全保障に直接的な打撃を与える可能性があり、各国が自国内での安定確保を模索するのは必然です。今回の規制は、その認識が米中双方で共有されていることを示しています。

2. サプライチェーンの地政学化

本来グローバルに展開されていた半導体サプライチェーンは、米中の規制強化によって「安全保障を優先する地政学的秩序」に再編されつつあります。米国は同盟国を巻き込んで技術ブロックを形成し、中国は国内市場を盾に自国産業の育成を図っています。その結果、世界の技術市場は分断され、半導体の「デカップリング」が現実味を帯びてきています。

3. 規制のスパイラルと副作用

米国が輸出規制を強めれば、中国は内製化を加速し、さらに自国市場で外国製品を制限する。この応酬が繰り返されることで、規制のスパイラルが形成されています。ただし、この過程で双方に副作用が生じています。米国企業は巨大な中国市場を失い、中国企業は国際的な技術エコシステムから孤立するリスクを抱えています。規制は安全保障を守る手段であると同時に、産業競争力を損なう諸刃の剣でもあります。

4. 台湾TSMCをめぐる緊張の高まり

GPUが国家戦略資源である以上、世界最先端の半導体製造拠点を持つ台湾の存在は極めて重要です。TSMCは3nm以下の先端ノードをほぼ独占しており、中国にとっては「喉から手が出るほど欲しい」存在です。一方で米国にとっては、TSMCを守ることが技術覇権維持の死活問題です。この状況は台湾海峡を「技術冷戦の最前線」と化し、単なる領土問題ではなく半導体資源をめぐる国際秩序の争点に押し上げています。

まとめ

今回の一連の動きは、GPUが単なる電子部品ではなく、国家の安全保障と産業政策の中心に据えられる時代に入ったことを明確に示しています。米中はそれぞれ規制を通じて相手国を抑え込み、同時に自国の自立を加速させる戦略を取っていますが、その過程でサプライチェーンの分断、企業収益の圧迫、国際的緊張の増大という副作用も生んでいます。特に台湾TSMCの存在は、GPUをめぐる覇権争いに地政学的な不安定要因を加えるものであり、今後の国際秩序における最大のリスクの一つとして位置づけられるでしょう。

おわりに

中国がNvidia製GPUの使用を規制し、米国が輸出規制を強化するという一連の動きは、単なる企業間の競争や市場シェアの問題ではなく、国家戦略そのものに直結する現象であることが改めて明らかになりました。GPUはAI研究から軍事システムに至るまで幅広く活用され、今や国家の競争力を左右する「不可欠な計算資源」となっています。そのため、各国がGPUを巡って規制を強化し、供給や利用のコントロールを図るのは自然な流れといえます。

米国の輸出規制は、中国の軍事転用阻止と技術覇権維持を目的としていますが、その副作用として中国の国産化を逆に加速させる要因にもなっています。一方の中国は、外国依存を弱点と認識し、国内産業の保護・育成を強力に推し進めています。両者のアプローチは異なるものの、いずれも「GPUを自国の統制下に置く」という目標で一致しており、結果として国際市場の分断と緊張の高まりを招いています。

特に注目すべきは、台湾TSMCの存在です。世界の先端半導体製造の大部分を担うTSMCは、GPUを含む先端チップの供給を左右する「世界の要石」となっています。米国にとってTSMCは技術覇権を維持するための要であり、中国にとっては依存を解消するために最も欲しい資源の一つです。この構図は、台湾海峡の地政学的リスクをさらに高め、単なる領土問題ではなく「技術覇権と資源確保の最前線」として国際秩序に影響を及ぼしています。

今後の展望として、GPUや半導体をめぐる米中対立は短期的に収束する見込みは薄く、むしろ規制と対抗措置のスパイラルが続く可能性が高いと考えられます。その中で企業はサプライチェーンの多角化を迫られ、各国政府も国家安全保障と産業政策を一体で考えざるを得なくなるでしょう。

最終的に、この問題は「技術を誰が持ち、誰が使えるのか」というシンプルで根源的な問いに行き着きます。GPUをはじめとする先端半導体は、21世紀の国際政治・経済を形作る最重要の戦略資源であり、その確保をめぐる競争は今後さらに激化すると予想されます。そして、その中心に台湾という存在がある限り、台湾海峡は世界全体の安定性を左右する焦点であり続けるでしょう。

参考文献

単体性能からシステム戦略へ ― Huaweiが描くAIスーパーコンピューティングの未来

はじめに

2025年9月、Huaweiは「AIスーパーコンピューティングクラスター」の強化計画を正式に発表しました。これは単なる新製品発表ではなく、国際的な技術競争と地政学的な制約が交差する中で、中国発のテクノロジー企業が進むべき道を示す戦略的な表明と位置づけられます。

米国による輸出規制や半導体製造装置への制限により、中国企業は最先端のEUVリソグラフィ技術や高性能GPUへのアクセスが難しくなっています。そのため、従来の「単体チップ性能で直接競う」というアプローチは現実的ではなくなりました。こうした環境下でHuaweiが打ち出したのが、「性能で劣るチップを大量に束ね、クラスタ設計と相互接続技術によって全体性能を底上げする」という戦略です。

この構想は、以前朝日新聞(AJW)などでも報じられていた「less powerful chips(性能的には劣るチップ)」を基盤としながらも、スケールとシステムアーキテクチャによって世界のAIインフラ市場で存在感を維持・拡大しようとする試みと合致します。つまりHuaweiは、ハードウェア単体の性能競争から一歩引き、クラスタ全体の設計力と自立的な供給体制 を新たな戦略の柱に据えたのです。

本記事では、このHuaweiの発表内容を整理し、その背景、戦略的意義、そして今後の課題について掘り下げていきます。

発表内容の概要

Huaweiが「AIスーパーコンピューティングクラスター強化」として打ち出した内容は、大きく分けてチップ開発のロードマップ、スーパーコンピューティングノード(SuperPods)の展開、自社メモリ技術、そして相互接続アーキテクチャの4点に整理できます。従来の単体GPUによる性能競争に代わり、クラスタ全体を最適化することで総合的な優位性を確保する狙いが明確に表れています。

  • Ascendチップのロードマップ Huaweiは、独自開発の「Ascend」シリーズの進化計画を提示しました。2025年に発表されたAscend 910Cに続き、2026年にAscend 950、2027年にAscend 960、2028年にAscend 970を投入する予定です。特筆すべきは、毎年新製品を出し続け、理論上は計算能力を倍増させるという「連続的進化」を掲げている点です。米国の輸出規制で先端ノードが利用できない中でも、自社の改良サイクルを加速することで性能差を徐々に埋める姿勢を示しています。
  • Atlas SuperPods と SuperCluster 構想 Huaweiは大規模AI計算に対応するため、チップを束ねた「Atlas SuperPods」を計画しています。Atlas 950は8,192個のAscendチップを搭載し、2026年第4四半期に投入予定です。さらにAtlas 960では15,488個のチップを搭載し、2027年第4四半期にリリースされる計画です。これらのSuperPodsを複数接続して「SuperCluster」を形成することで、単体チップ性能の劣位を数の力で補う仕組みを構築します。これにより、数十万GPU規模のNVIDIAクラスタと同等か、それ以上の総合計算性能を達成することを目指しています。
  • 自社開発HBM(高帯域メモリ)の採用 AI処理では計算ユニットの性能以上にメモリ帯域がボトルネックになりやすい点が指摘されます。Huaweiは、自社でHBM(High-Bandwidth Memory)を開発済みであると発表し、輸入規制の影響を回避する姿勢を打ち出しました。これにより、Ascendチップの限られた演算性能を最大限に引き出し、SuperPod全体での効率を確保しようとしています。
  • 相互接続アーキテクチャとシステム設計 SuperPodsやSuperClustersを機能させるには、大量のチップ間を結ぶ相互接続技術が不可欠です。Huaweiはノード内部およびノード間の通信を最適化する高速相互接続を実装し、チップを増やすほど効率が低下するという「スケールの壁」を克服する設計を打ち出しました。NVIDIAがNVLinkやInfiniBandを武器としているのに対し、Huaweiは独自技術で競合に迫ろうとしています。

こうした発表内容は、単に新しい製品を示すものではなく、Huaweiが 「単体チップ性能で競うのではなく、クラスタ全体の設計と供給体制で差別化する」 という長期戦略の具体的ロードマップを提示したものといえます。

「劣る性能で戦う」戦略の位置づけ

Huaweiの発表を理解する上で重要なのは、同社が自らの技術的立ち位置を冷静に把握し、単体性能での勝負からシステム全体での勝負へと軸を移した点です。これは、米国の輸出規制や先端ノードの制限という外部要因に対応するための「現実的な戦略」であり、同時に市場での新しいポジショニングを確立しようとする試みでもあります。

まず前提として、Ascendシリーズのチップは最先端のEUVリソグラフィや5nm以下の製造プロセスを利用できないため、演算能力や電力効率ではNVIDIAやAMDの最新GPUに劣ります。加えて、ソフトウェア・エコシステムにおいてもCUDAのような強固な開発基盤を持つ競合と比べると見劣りするのが実情です。従来の競争軸では勝ち目が薄い、という認識がHuaweiの戦略転換を促したといえるでしょう。

そこで同社は次の3つの観点から戦略を構築しています。

  1. スケールによる補完 チップ単体の性能差を、大量のチップを束ねることで埋め合わせる。Atlas 950や960に代表されるSuperPodsを多数連結し、「SuperCluster」として展開することで、総合計算能力では世界トップクラスを目指す。
  2. アーキテクチャによる効率化 単に数を揃えるだけでなく、チップ間の相互接続を最適化することで「スケールの壁」を克服する。これにより、性能が低めのチップであっても、システム全体としては十分に競合製品と渡り合える水準を確保しようとしている。
  3. 自立的な供給体制 輸出規制で外部調達に依存できない状況を逆手に取り、自社HBMや国内生産リソースを活用。性能よりも供給安定性を重視する市場(政府機関や国営企業、大規模研究所など)を主なターゲットに据えている。

この戦略の意義は、性能という単一の物差しではなく、「規模・設計・供給」という複数の軸で競争する新しい市場の土俵を提示した点にあります。つまりHuaweiは、自らが不利な領域を避けつつ、有利に戦える領域を選び取ることで、国際市場での居場所を確保しようとしているのです。

このような姿勢は、AIインフラ分野における競争の多様化を象徴しており、従来の「最速・最高性能チップを持つことが唯一の優位性」という図式を揺るがす可能性があります。

期待される利便性

HuaweiのAIスーパーコンピューティングクラスター強化計画は、単体チップの性能不足を補うための技術的工夫にとどまらず、利用者にとっての実際的なメリットを重視して設計されています。特に、中国国内の研究機関や政府機関、さらには大規模な産業応用を見据えた利用シナリオにおいては、性能指標以上の利便性が強調されています。ここでは、この計画がもたらす具体的な利点を整理します。

国家規模プロジェクトへの対応

科学技術計算や大規模AIモデルの学習といった用途では、個々のチップ性能よりも総合的な計算資源の可用性が重視されます。SuperPodsやSuperClustersはまさにそうした領域に適しており、中国国内の研究機関や政府プロジェクトが求める「安定して大規模なリソース」を提供する基盤となり得ます。特に、気象シミュレーションやゲノム解析、自然言語処理の大規模モデル学習といった分野では恩恵が大きいでしょう。

安定供給と調達リスクの低減

輸出規制により国外製品への依存が難しい環境において、自国で調達可能なチップとメモリを組み合わせることは、ユーザーにとって調達リスクの低減を意味します。特に政府系や国有企業は、性能よりも供給の安定性を優先する傾向があり、Huaweiの戦略はこうした需要に合致します。

クラスタ設計の柔軟性

SuperPods単位での導入が可能であるため、ユーザーは必要な規模に応じてシステムを段階的に拡張できます。例えば、大学や研究機関ではまず小規模なSuperPodを導入し、需要が増加すれば複数を接続してSuperClusterへと拡張する、といったスケーラブルな運用が可能になります。

コスト最適化の余地

先端ノードを用いた高性能GPUと比較すると、Ascendチップは製造コストが抑えられる可能性があります。大量調達によるスケールメリットと、Huawei独自の相互接続技術の最適化を組み合わせることで、ユーザーは性能対価格比に優れた選択肢を得られるかもしれません。

国内エコシステムとの統合

Huaweiは独自の開発環境(CANN SDKなど)を整備しており、ソフトウェアスタック全体を自社製品で統合可能です。これにより、クラスタの運用に必要なツールやライブラリを国内で完結できる点も、利便性の一つといえます。開発から運用まで一貫して国内で完結できる仕組みは、国外依存を減らす意味で大きな利点です。

懸念点と課題

HuaweiのAIスーパーコンピューティングクラスター強化計画は、確かに現実的な戦略として注目を集めていますが、実際の運用や市場での評価においては多くの課題も存在します。これらの課題は、技術的な側面だけでなく、エコシステムや国際的な競争環境とも密接に関わっています。以下では、想定される懸念点を整理します。

電力効率と物理的制約

Ascendチップは先端ノードを利用できないため、同等の処理能力を得るにはより多くのチップを投入せざるを得ません。その結果、消費電力の増加や発熱問題、設置スペースの拡大といった物理的制約が顕著になります。大規模クラスタを運用する際には、電源インフラや冷却システムの強化が必須となり、コストや環境負荷の面で大きな課題を残すことになります。

ソフトウェアエコシステムの未成熟

ハードウェアが強力でも、それを活用するソフトウェア基盤が整っていなければ十分な性能を引き出すことはできません。NVIDIAのCUDAのように広く普及した開発環境と比較すると、HuaweiのCANN SDKや関連ツールはまだ開発者コミュニティが限定的であり、最適化や利用事例が不足しています。開発者が習熟するまでに時間を要し、短期的には利用障壁となる可能性があります。

国際市場での採用制限

Huawei製品は米国の規制対象となっているため、グローバル市場での展開は限定的です。特に北米や欧州のクラウド事業者・研究機関では、セキュリティや規制リスクを理由に採用を見送る可能性が高いでしょう。結果として、同社の戦略は中国国内市場への依存度が高まり、国際的な技術標準形成への影響力が限定されるリスクがあります。

相互接続技術の実効性

Huaweiは高速な相互接続を強調していますが、実際の性能やスケーラビリティについてはまだ実測データが不足しています。チップ間通信のレイテンシや帯域効率はクラスタ全体の性能を大きく左右する要素であり、理論通りにスケールするかは不透明です。もし効率が想定を下回れば、NVIDIAのNVLinkやInfiniBandに対抗することは難しくなります。

コスト競争力の持続性

現時点ではAscendチップの製造コストが比較的抑えられる可能性がありますが、電力消費や冷却システムへの追加投資を考慮すると、総所有コスト(TCO)が必ずしも安価になるとは限りません。また、量産規模や歩留まりの変動によって価格優位性が揺らぐ可能性もあります。


Huaweiのアプローチは戦略的に合理性がありますが、実際の市場競争においては「技術的な限界」「国際規制」「運用コスト」の三つの壁をどう突破するかが成否を分けるポイントとなるでしょう。

おわりに

Huaweiが発表したAIスーパーコンピューティングクラスター強化計画は、単体チップの性能不足を自覚したうえで、システム全体の設計力と供給体制を武器に据えるという戦略を明確に示した点に大きな意味があります。Ascendシリーズのロードマップ、Atlas SuperPods/SuperClustersの構想、自社開発HBMの採用、高速相互接続技術の導入はいずれも、この戦略を実現するための具体的な布石です。

この取り組みは、従来の「単体性能こそが優位性の源泉」という発想を揺るがし、AIインフラ市場における新たな競争軸を提示しました。つまり、Huaweiは自らが不利な領域を正面から競うのではなく、規模・構造・供給の安定性という異なる土俵を選び取ったのです。これは輸出規制下での生存戦略であると同時に、中国国内における国家的プロジェクト需要に応えるための現実的な選択肢とも言えます。

一方で、電力効率や冷却、設置スペースといった物理的制約、ソフトウェアエコシステムの未成熟、国際市場での採用制限といった課題は依然として残されています。総所有コストの面で真に競争力を持てるか、また国内に閉じたエコシステムがどこまで持続可能かは、今後の大きな焦点となるでしょう。

それでも、Huaweiの今回の発表は、AIインフラの進化が必ずしも「最先端チップの保有」によってのみ進むわけではないことを示しています。システム全体の設計思想やサプライチェーンの制御といった要素が、性能と同等かそれ以上に重要な意味を持ち得ることを明確にしたのです。

今後数年で、Huaweiが計画通りにSuperPodsやSuperClustersを展開できるか、そして実際の性能やコスト効率が市場の期待に応えられるかが注目されます。仮にそれが成功すれば、中国国内におけるAI基盤の自立が一歩進むだけでなく、世界的にも「性能だけではない競争のあり方」を提示する象徴的な事例となる可能性があります。

参考文献

Nvidia規制で加速する中国のAI半導体自前化戦略

経緯

2018年以降、米中間の貿易摩擦が激化する中、米国は中国に対して先端半導体技術の輸出規制を段階的に強化してきました 。特に、AI用途で世界市場をリードするNvidiaのGPU(Graphics Processing Unit)への輸出を制限する措置が注目されます。  

2022年9月、米国政府はNvidia製の「A100」や「H100」などハイエンドGPUを対象に、中国企業や研究機関向けの輸出許可を厳格化すると発表し、これは同年10月に施行されました 。これにより、AI学習や推論のために高性能GPUを必要とする中国のクラウド事業者や研究機関は、従来どおりの供給ルートから調達できなくなりました。  

2022年10月には、米国商務省がさらに踏み込み、Nvidiaの「A100」や「H100」などを含むAI向け先端チップを対象とした輸出規制を施行しました 。これにより、Nvidiaの正規ルートでの対中国輸出は大幅に制限されることとなりました。  

2022年初頭、トランプ政権下で打ち出された一連の規制は、バイデン政権でも解除されることなく引き継がれました 。特に「米国製ソフトウェア(CUDAを含む)とライセンスを組み合わせたGPUボード」も対象に含まれたため、中国企業はNvidia製GPUを活用することが困難となりました。  

こうした環境下で、中国の主要テック企業は「既存のGPUプラットフォームに依存し続けることのリスク」を強く認識するに至りました。

2023年、Alibaba(阿里巴巴)、Tencent(騰訊)、Baidu(百度)などは、それまでNvidiaのGPUを用いて自社データセンターでAI研究やクラウドサービスを提供してきましたが、在庫が逼迫し始めたことで「国内メーカー製チップへの切り替え計画」を正式に策定しました 。  

同年末から2024年にかけて、Huawei(華為技術)が開発する「Ascend」シリーズをはじめ、Cambricon(寒武紀)、T-Head(兆芯)など複数の国産AIチップメーカーが、データセンター向けのサーバーデザインおよび大量製造のパートナーシップ構築を表明しました 。  

2024年春、NvidiaのBlackwell(次世代アーキテクチャ)搭載サーバーが米国国内で先行投入されたものの、対中国向けには「高帯域メモリ(HBM)を除外したセーフティバージョン」のみが許可される見込みと報じられました 。これに伴い、中国テック企業は「学習用途には残存分の旧世代Nvidia GPUを、推論用途には国産チップを併用」というハイブリッド戦略を取らざるを得ない状況となりました。  

2024年末から2025年初頭にかけて、Alibaba傘下のAI研究機関「DAMO Academy」はAI関連チップ(RISC-V CPUやFPGAなど)の開発を進め、その成果の一部(例:サーバーグレードCPU C930の2025年3月納入開始予定など)を公表しました 。これに続き、Tencent傘下のクラウド部門も国産チップを搭載したAIサーバーを試験導入しました。さらに、Baiduは「AI推論専用クリスタルボード」の量産に向けたラインを立ち上げ、中国政府系VCから数十億円規模の出資を取り付けました。  

同時に、北京、上海、深圳などには「AIチップ開発特区」が設置され、税制優遇や補助金支給を通じてスタートアップや既存大手企業の競争を促進しています 。2024年までに、多数の国内企業が「7nm以下のプロセス技術を用いたAIチップ」の製造を目指すプロジェクトを公表し、2025年には一部製品のサンプル出荷を目指しています 。代表例は、Iluvatar CoreX(天罡100シリーズ)、MetaX(GPGPU製品)、Biren Technology(BR100)、Black Sesame Technologies(ADAS・自動運転向けAIチップ)などです 。

背景

中国政府は2015年に「中国製造2025」を正式発表し 、その中で「半導体自給率向上」を国家戦略の重要課題の一つと位置づけました。以降、国家資金や地方政府の補助金を投入しつつ、国内企業の研究開発投資を強化してきました。  

一方、2022年以降の米国による輸出規制強化は、中国にとって「外部からの技術流入を遮断しようとする動き」として受け止められました。特に2022年10月のNvidia製先端GPUに対する輸出規制強化は、中国企業のAI開発ロードマップに大きな影響を及ぼしました 。  

中国には豊富な電力インフラが整備されています。2023年にハイテク産業向け電力消費は前年比11.2%増(一部資料では11.3% )となり 、再エネ・火力を合わせた発電能力が急速に拡大していることから、「演算性能あたりの消費電力がやや高い国産チップを複数並列稼働させても電力面で吸収可能」との見方が広がっています。  

また、マイニング用途でかつて大量に投入されたGPUが電力逼迫や環境面の課題を引き起こした一方、現在はAI用途向けにより効率的な専用チップを開発するほうが有益と判断されています 。こうした経緯もあり、「マイニング規制で獲得したデータセンター運用ノウハウをAIチップ開発に転用しやすい」というアドバンテージも存在すると言われています 。  

さらに、中国国内の大規模ユーザー(インターネット企業、金融機関、製造業など)が急速にAI需要を拡大していることから、国内市場だけで十分な需要が見込める点も、企業各社の自前化を後押ししています。「中国製造2025」では、2025年までに半導体自給率を70%に引き上げるという目標が掲げられていました 。政府は引き続き半導体の国内生産能力向上を目指しており、この目標達成に向けた官民連携が加速しています。  

今後の影響予測

技術的自立の進展と国際競争

国産AIチップがある程度の性能を有し、Nvidia製GPUとのギャップを埋められれば、グローバルにおける選択肢が拡大し、中国製チップが他国のデータセンターやAIプロバイダーにも採用される可能性があります 。特に、価格競争力のあるチップが登場した場合、北米・欧州との間で技術競争が激化し、NvidiaやAMD、Intelといった従来のプレイヤーはさらなる研究開発投資を迫られるでしょう 。  

サプライチェーンの再構築

2025年以降、中国は国産素材と製造装置の内製化を加速し、製造装置メーカー(EUVリソグラフィ装置など)への投資を強化する動きが予測されます 。将来的には、「製造から設計までの垂直統合型エコシステム」を構築し、外部リスク(米国の追加規制など)に耐えうる自律的な供給網を確立する可能性が高いです 。また、日本やオランダなどの先端装置メーカーも、対中ビジネスの在り方を見直し、「協業か取引制限か」の選択を迫られることになるでしょう 。  

国内AIエコシステムへの影響

中国国内のAIプラットフォームは、国産チップの普及によってコスト構造が変化し、AIサービスの価格低下と導入企業の拡大が進むと考えられます 。これにより、医療画像診断や自動運転、スマートシティなどの分野でAI導入が加速し、「産業全体のデジタルトランスフォーメーション」が一気に進展する可能性があります 。加えて、AI関連スタートアップも国産ハードウェアを活用しやすくなることで、開発のハードルが下がり、イノベーションの創出速度が向上するでしょう 。  

地政学的リスクと世界経済への波及

中国製チップが世界市場で一定のシェアを獲得すれば、米中両国間の技術覇権争いはさらなる激化を迎えます 。米国は追加の制裁や輸出規制を打ち出す一方、中国は対抗策として関税引き下げや輸出奨励を行う可能性が高いです 。この結果、「技術ブロック化」(Tech Bloc)の傾向が強まり、世界のサプライチェーンはさらに分断されるリスクがあります 。特に半導体素材や製造装置の二極化が進むと、日本や韓国、欧州諸国は両陣営の間で揺れる立場を余儀なくされるでしょう 。  

国内雇用と産業育成

国産AIチップの量産化が進めば、中国国内では「設計エンジニア」「プロセス開発技術者」「データセンター運用エンジニア」などの需要が急増し、人材育成ニーズが拡大します 。これに呼応して、大学や研究機関は半導体設計・製造分野のカリキュラムを強化し、国内の技術者供給を担保する動きが活発化するでしょう 。その結果、ハイテク産業の雇用創出効果が高まり、中国経済の高度化をさらに加速させる要因となります

まとめ

米国のエヌビディアGPU輸出規制に端を発した中国のAI半導体自前化戦略は、「国家安全保障上の必要性」と「膨大な国内市場の存在」という二つの要因に後押しされています。Nvidia規制前は高性能GPUを輸入に依存していた中国企業が、2023年以降は自社・国内メーカー製のAIチップにシフトし、既存のデータセンターアーキテクチャを改変して対応することを余儀なくされました 。政府の補助金や税制優遇措置、設計・製造拠点の集約化などを通じて、国内ベンダーは短期間で「7nmプロセスAIチップ」のプロトタイプ開発を達成しました 。2025年には一部企業が量産体制の構築を目指し、中国製AIチップの実運用が現実味を帯び始めています。  

今後、中国製チップの国際競争力が高まれば、世界のAIハードウェア市場は二極化傾向を強める可能性があります。技術ブロック化の懸念が高まる中、日本や欧州などのサプライチェーンは新たな調整を迫られるでしょう。国内ではAIサービスの普及と産業のデジタル化が加速し、ハイテク人材需要の高まりを背景に経済成長への寄与が期待できます。一方、米中間での技術覇権争いが激化すれば、半導体素材・製造装置の流通が一層限定され、各国は自国の供給網を強化せざるを得ない状況に陥るでしょう。

以上のように、「エヌビディア規制で加速する中国のAI半導体自前化戦略」は、単なる技術的トレンドにとどまらず、地政学的・経済的に重大なインパクトを伴う大きな潮流と言えます。

参考リンク

ChromebookにインストールしたVSCodeがちらつく場合の対処方法

ChromebookにインストールしたVisual Studio CodeのExplorerなどの表示がちらついたり、何も表示されないという事象に遭遇しました。すべてのChromebookで起きるとは限りませんが、私の使用している「ASUS Chromebook Detachable CM3」で発生したため、対処法を共有します。

対処方法

結論から書くと、「--disble-gpu」オプションをつけてVisual Studio Codeを起動すると解消します。

$ code --diable-gpu

もし、カレントディレクトリをcodeコマンドで開く場合は、

$ code . --disable-gpu

とします。

毎回オプションを付けるのが面倒な場合は、エイリアスを使って.bashrcなどに

alias code="code --disble-gpu"

と定義しておくと、毎回オプションを指定しなくて済みます。

何が原因なのか

明確な記述を見つけられませんでしたが、VSCodeとGPUとの相性で発生するようです。ただし、今回のケースではGPU非搭載のマシンでGPUアクセラレーションが有効になっているのが問題だと思われます。

本事象はChromebookでのみ起きる事象ではなく、VirtualBox上でも起きるようですので、リモートデスクトップ環境を含む仮想マシンや低スペックマシンで発生する可能性があります。

また、直接的な影響かわかりませんが、ターミナルの文字描画が遅れます。コピペでは特に問題ありませんが、キーボードで文字を入力していると最後の方の文字が表示されていないことがあります。こちらについては引き続き調査していきます。

モバイルバージョンを終了