Meta、Scale AIに約2兆円を出資──CEOワン氏をスーパインテリジェンス開発へ招へい

Meta、Scale AIに約2兆円を出資──CEOワン氏をスーパインテリジェンス開発へ招へい

Meta(旧Facebook)が、AIインフラを支える米国スタートアップ「Scale AI」に対して約14.3〜14.8億ドル(約2兆円)という巨額の出資を行い、AI業界に衝撃を与えました。さらに、Scale AIの創業者でCEOのアレクサンドル・ワン氏がMetaの“スーパインテリジェンス開発チーム”のトップに就任するという人事も発表され、今後の生成AI開発レースにおいて大きな転換点となりそうです。

目次

Scale AIとは?

Scale AIは、2016年にアレクサンドル・ワン(Alexandr Wang)氏とルーシー・グオ(Lucy Guo)氏によって設立された米国サンフランシスコのスタートアップです。

主な事業は、AIモデルの学習に不可欠な「データのアノテーション(ラベリング)」と「モデルの評価サービス」の提供。高精度な学習データを効率よく大量に用意する能力が求められる現代のAI開発において、Scale AIの提供するサービスは、OpenAI、Meta、Google、Microsoftといったトッププレイヤーにとって不可欠な存在となっています。

特に、「人間とAIの協調によるラベリング(Human-in-the-Loop)」を軸としたラベル付けの品質管理技術は、同社の大きな強みです。ギグワーカーによるラベリングを世界規模で効率化しながら、精度を担保するためのプラットフォームとして「Remotasks」などを展開しています。

また、軍事や公共機関向けのプロジェクトにも関与しており、米国国防総省などとも契約を結ぶなど、その守備範囲は民間にとどまりません。

Metaの出資とCEO人事の背景

Metaは今回、非議決権株として49%の株式を取得するという形でScale AIに出資を行いました。この出資により、MetaはScale AIの経営には直接関与しない立場を取りながらも、データ供給とAI評価における独占的なアクセス権を得る可能性があります。

出資と同時に発表されたのが、Scale AIのCEOであるアレクサンドル・ワン氏がMetaに移籍し、同社の“Superintelligence Lab(スーパインテリジェンスラボ)”の責任者に就任するというニュースです。ワン氏はScale AIの創業以来、データ品質の重要性を業界に根付かせた立役者の一人。今回の人事は、MetaがAGI(汎用人工知能)開発に本格参入する象徴的な動きと見られています。

なお、ワン氏は引き続きScale AIの取締役として関与するものの、日常的な経営からは退く形となります。

業界へのインパクト

今回の出資と人事は、AI業界にとって無視できない影響を与えています。

GoogleやMicrosoft、OpenAIなどScale AIの顧客だった企業の中には、「Metaの傘下となった同社と今後もデータ契約を継続するべきか」について見直しを検討している企業も出てきています。競合と直接つながることに対して懸念があるためです。

一方で、Metaにとっては、LLaMAシリーズなどの大規模言語モデル開発で出遅れを取り戻すチャンスでもあります。AIの性能はモデルそのものだけでなく、「どれだけ高品質で信頼できる学習データを確保できるか」にかかっており、今回の出資はまさにその基盤を強化する狙いがあるといえるでしょう。

今後の展望

MetaのAI戦略は、OpenAIやAnthropic、xAIなどが凌ぎを削る次世代AI開発競争のなかで存在感を高めるための布石です。特に、AGI(Artificial General Intelligence)を見据えた「スーパインテリジェンス開発」という言葉が初めて正式に使われた点は象徴的です。

また、Scale AIはMetaに依存する形になったことで、業界での中立性を失う可能性があります。これは今後の顧客離れや再編にもつながるかもしれません。

まとめ

MetaによるScale AIへの出資とCEO人事は、表面的には“出資と転職”という単純な話に見えるかもしれません。しかし、その背後には次世代のAI開発に向けた熾烈な戦略競争があり、学習データというAIの「燃料」を誰が押さえるのかという本質的な争いが垣間見えます。

今後、MetaがScale AIの技術をどう取り込んでLLaMAシリーズやAGI開発を進めていくのか。競合各社がどのように対応するのか。業界全体の行方を左右する重要なトピックとなるでしょう。

参考文献

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!
目次