AIを悪用したゼロデイ攻撃とAI-DRによる防御の最前線

AIを悪用したゼロデイ攻撃とAI-DRによる防御の最前線

ここ数年、サイバー攻撃の様相は大きく変化しています。その背景にあるのが AIの悪用 です。これまで攻撃者が手作業で時間をかけて行っていた脆弱性探索や攻撃コード生成、標的の選定といった作業は、AIの登場によって一気に効率化されました。とりわけ、公開されていない未知の脆弱性を突く ゼロデイ攻撃 にAIが活用されるケースが増えており、防御側にとって従来以上に難しい状況が生まれています。

従来のセキュリティ製品は「既知のシグネチャ」や「過去の攻撃パターン」に依存してきました。しかしゼロデイ攻撃は定義上、まだ知られていない脆弱性を狙うため、シグネチャベースの防御が機能しません。AIが関与することで、攻撃コードの作成スピードは劇的に向上し、被害が発生するまでの時間はさらに短縮されつつあります。

このような環境下で、防御側もAIを取り入れた新しい枠組みを整備しなければ、攻撃のスピードに追いつけません。そこで登場したのが AI-DR(AI Detection & Response) です。これはAIを利用して攻撃の兆候を早期に捉え、迅速に封じ込めを図るための仕組みであり、未知の攻撃やゼロデイに対抗するための有力なアプローチとして注目されています。

目次

AI-DRとは何か

AI-DRは、AIを用いて「脅威の検知(Detection)」と「対応(Response)」を自動または半自動で行う仕組みを指します。従来のセキュリティ対策は、既知の攻撃パターンをもとに検知する「受動的な守り」に依存していました。しかし、ゼロデイ攻撃のように前例がなくパターン化されていない脅威に対しては、既存の仕組みでは対応が困難です。AI-DRはこの課題を補うために生まれた考え方であり、「未知の脅威をリアルタイムで見つけ出し、即座に封じ込める」ことを狙いとしています。

AI-DRの特徴は、攻撃の痕跡ではなく振る舞いそのものを監視する点 にあります。例えばユーザの通常行動と大きく異なるアクセスパターン、システム内で急激に増加する異常プロセス、通常では通信しない先への接続などをAIモデルが学習し、異常と判断すれば即座にアラートや隔離処理が実行されます。これは、未知のゼロデイ攻撃であっても「結果として現れる不自然な挙動」を基準に検知できる点で強力です。

さらにAI-DRは、単に脅威を検知するだけでなく、レスポンスの自動化 を重視しています。従来は人間の判断を待たなければならなかった対応(端末の隔離、アカウントの停止、アクセス権限の剥奪など)が、自動またはセミオートで実行され、被害の拡大を防ぐことができます。

主な機能

  • 異常検知:ユーザ行動やプロセスの動きを学習し、通常と異なる挙動を検出
  • 自動応答:検知した端末の隔離、アカウント停止、ログ収集などを自動実行
  • 脅威インテリジェンス統合:外部の攻撃情報を取り込み、モデルを継続的に更新
  • 可視化と説明性:なぜ異常と判断したのかを提示し、運用者が対応を判断できるよう支援

このようにAI-DRは、ゼロデイ攻撃を含む未知の脅威に対抗するための「次世代型セキュリティアプローチ」として注目されています。

具体的な製品例

AI-DRの考え方はすでに複数の製品に取り入れられており、市場には実際に利用可能なサービスが登場しています。以下では代表的な例を挙げ、それぞれの特徴を解説します。

  • HiddenLayer AI Detection & Response ジェネレーティブAIやエージェントAIを利用する企業向けに特化した防御製品です。LLMを狙ったプロンプトインジェクション、機密データの漏洩、モデル盗用、特権昇格といった新しい攻撃ベクトルに対応しています。AIアプリケーションを安全に運用することを重視しており、従来のセキュリティ製品ではカバーできなかった領域を補完します。生成AIを業務に組み込んでいる企業にとっては特に有効です。
  • Vectra AI Platform ネットワークとクラウド環境を横断的に監視し、攻撃の進行をリアルタイムで可視化します。既知のマルウェアや脆弱性を狙う攻撃だけでなく、ゼロデイを利用した横展開(ラテラルムーブメント)や権限濫用を検知するのが強みです。大規模なクラウド利用環境やハイブリッドネットワークを持つ企業での導入事例が多く、SOCチームのアラート疲労を軽減する仕組みも提供します。
  • CrowdStrike Falcon エンドポイント保護(EPP)とEDRの統合製品として広く普及しており、AIを活用して異常な挙動を早期に検知します。シグネチャに依存せず、未知のプロセスや不自然な権限昇格を検知できるため、ゼロデイ攻撃の挙動を捕捉する可能性があります。中小規模の組織から大企業まで幅広く利用され、クラウド経由で即時にアップデートされる点も強みです。
  • Trend Vision One(トレンドマイクロ) 既知・未知の攻撃に備えるための統合プラットフォームです。エンドポイント、メール、クラウド、ネットワークなど複数のレイヤーを一元的に監視し、攻撃の進行を早期に可視化します。特に日本国内では導入実績が多く、ゼロデイ対策に加えて標的型攻撃やランサムウェアの初動段階を封じ込める仕組みを持ちます。
  • Secureworks Taegis XDR 「Extended Detection & Response」として、複数のセキュリティ製品から収集したログを統合的に分析し、脅威を浮き彫りにします。AIによる相関分析を活用し、単発では見逃されがちな攻撃の兆候を組み合わせて検知できる点が特徴です。特に自社にSOCを持たない組織でも、クラウド型で利用できるため導入のハードルが低いのが利点です。

製品群の共通点

これらの製品はいずれも「シグネチャに依存せず、振る舞いや異常パターンに注目する」点で共通しています。さらに、自動応答やインシデントの可視化といった機能を備えており、従来のセキュリティ運用を効率化するとともにゼロデイ攻撃への耐性を高めています。

攻撃は一歩先を行く現実

AI-DRのような新しい防御技術が登場している一方で、攻撃者の進化もまた加速しています。特に注目すべきは、攻撃者がAIを積極的に利用し始めている点です。

従来、ゼロデイ攻撃には脆弱性の解析やエクスプロイトコードの作成といった高度な専門知識が必要であり、時間も労力もかかりました。しかし現在では、AIツールを活用することでこれらのプロセスが自動化され、短時間で多数の脆弱性を検証・悪用できるようになっています。例えば、セキュリティ研究者向けに提供されたAIフレームワークが、脆弱性探索から攻撃実行までをほぼ自律的に行えることが確認されており、本来の用途を逸脱して攻撃者に悪用されるリスクが現実化しています。

また、攻撃のスケーラビリティが格段に向上している点も大きな脅威です。かつては一度に限られた数の標的しか攻撃できませんでしたが、AIを使えば膨大な対象に同時並行で攻撃を仕掛けることが可能になります。脆弱性スキャン、パスワードリスト攻撃、フィッシングメール生成などが自動化されることで、攻撃の規模と頻度は防御側の想定を超えるスピードで拡大しています。

防御側が後手に回りやすい理由は、次の3点に集約できます。

  • 情報公開の遅れ:ゼロデイはパッチが提供されるまで防御手段が限られる。
  • 人間の判断の必要性:AI-DR製品が自動応答を備えていても、誤検知を避けるため人の承認を前提にしているケースが多い。
  • リソース不足:特に中小企業では高度なSOCや専門人材を持てず、攻撃スピードに対応できない。

結果として、「製品は存在するが攻撃の方が一歩先を行く」という状況が続いています。つまり、防御側がAIを導入して強化しても、攻撃者もまた同じAIを利用して優位を保とうとしている構図です。

現在とれる現実的な対策

ゼロデイ攻撃を完全に防ぐことは不可能に近いですが、「いかに早く気付き、被害を最小化するか」 という観点で現実的な対策を取ることは可能です。攻撃の自動化・高速化に対応するため、防御側も多層的な仕組みと運用を組み合わせる必要があります。

1. 技術的対策

  • 多層防御(Defense in Depth)の徹底 単一のセキュリティ製品に依存せず、EPP(エンドポイント保護)、EDR/XDR(検知と対応)、WAF(Webアプリケーション防御)、ネットワーク監視を組み合わせて防御網を構築します。
  • 異常挙動ベースの検知強化 シグネチャに頼らず、AIや行動分析を活用して「いつもと違う動き」を見つけ出す。ゼロデイの多くは未知の挙動を伴うため、これが突破口になります。
  • 仮想パッチとIPSの活用 パッチ提供までの時間差を埋めるため、IPS(侵入防御システム)やWAFで疑わしい通信を遮断し、ゼロデイ攻撃の直接的な侵入を防ぎます。
  • SBOM(ソフトウェア部品表)の管理 利用中のソフトウェアやOSSライブラリを把握しておくことで、脆弱性が公開された際に即座に影響範囲を確認できます。

2. 運用的対策

  • インシデント対応計画(IRP)の整備 感染が疑われた際に「隔離→調査→復旧→報告」の流れを事前に定義し、机上演習や模擬訓練を実施。緊急時の混乱を防ぎます。
  • 自動応答ルールの導入 例:異常検知時に端末を自動隔離、アカウントを一時停止。誤検知のリスクを減らすために「半自動(承認後実行)」の運用も有効です。
  • パッチ適用ポリシーの厳格化 ゼロデイの多くは短期間で「ワンデイ(既知の脆弱性)」に移行するため、公開後のパッチ適用をどれだけ迅速にできるかが鍵です。

3. 組織的対策

  • 脅威インテリジェンスの活用 JPCERT/CC、US-CERT、ベンダーの提供する脅威情報を購読し、最新の攻撃動向を把握して早期対処につなげる。
  • SOC/MSSの利用 自社に専門チームを持てない場合、外部のセキュリティ監視サービス(MSSP)を利用して24/7の監視体制を整備します。
  • 人材教育と意識向上 社員向けフィッシング訓練やセキュリティ教育を継続的に行うことで、ヒューマンエラーを減らし、AIを悪用した攻撃の初動を防ぐことができます。

4. システム設計面の工夫

  • ゼロトラストアーキテクチャの導入 ネットワークを信頼せず、アクセスごとに検証する仕組みを整えることで、侵入を前提にした被害局所化が可能になります。
  • マイクロセグメンテーション ネットワーク内を細かく分割し、攻撃者が横展開できないように制御します。
  • セキュア開発ライフサイクル(SDL)の徹底 開発段階からコードレビューや静的解析を組み込み、潜在的な脆弱性を減らすことが長期的な防御に直結します。

中小企業における最低限の対策

IT投資に大きな予算を割けない中小企業であっても、ゼロデイ攻撃やAIを悪用した攻撃に備えることは可能です。重要なのは「高額な先端製品を導入すること」よりも、基本を徹底して攻撃者にとって狙いにくい環境を整えること です。以下に最低限取り組むべき施策を挙げます。

1. 基盤のセキュリティ衛生管理

  • OS・ソフトウェアの即時更新 WindowsやmacOS、Linuxなどの基本OSだけでなく、ブラウザや業務ソフトも含めて常に最新版に維持します。ゼロデイが公開された後は数日のうちに「既知の脆弱性」となり、攻撃が集中するため、更新のスピードが最大の防御策になります。
  • 不要なサービス・アカウントの停止 使われていないアカウントや古いソフトは攻撃の温床となるため、定期的に棚卸して削除します。

2. アクセス制御の強化

  • 多要素認証(MFA)の導入 特にメール、クラウドサービス、VPNへのアクセスには必須。コストは低く、乗っ取り攻撃の大部分を防げます。
  • 最小権限の原則(Least Privilege) 社員が必要最小限の権限しか持たないように設定し、管理者権限を常用させない。

3. データ保護

  • 定期的なバックアップ(オフライン含む) クラウドバックアップに加え、USBやNASに暗号化したバックアップを取り、ネットワークから切り離して保管します。ランサムウェア対策として不可欠です。
  • 復旧手順の確認 バックアップを取るだけでなく、実際に復旧できるかを年に数回テストしておくことが重要です。

4. クラウドと標準機能の最大活用

  • クラウドサービスのセキュリティ機能を利用 Microsoft 365 や Google Workspace には標準でメールフィルタやマルウェア対策が備わっています。外部製品を買わなくても、これらを正しく設定すれば十分な防御効果があります。
  • ログとアラートの有効化 無料または低コストで提供されているログ機能を有効化し、不審な挙動を確認できる体制を整えます。

5. エンドポイント対策

  • 基本的なエンドポイント保護ソフトの導入 Windows Defenderのような標準機能でも無効化せず活用することが重要です。追加予算がある場合は、中小企業向けの軽量EDR製品を検討しても良いでしょう。

6. 社員教育と簡易ルール作成

  • フィッシング対策教育 メールの添付ファイルやリンクを不用意に開かないよう定期的に啓発。AIで生成された巧妙なフィッシングも増えているため、特に注意が必要です。
  • インシデント対応ルール 「怪しい挙動に気付いたらLANケーブルを抜く」「管理者にすぐ連絡する」といったシンプルな行動指針を全員に共有しておくことが被害拡大防止につながります。

まとめ

中小企業にとっての現実的な防御は、「高価なAI-DR製品の導入」ではなく「基本の徹底+クラウド活用+最低限のエンドポイント対策」 です。これだけでも攻撃の大半を防ぎ、ゼロデイ攻撃を受けた場合でも被害を局所化できます。

おわりに

AIの進化は、防御者と同じだけ攻撃者にも力を与えています。特にゼロデイ攻撃の分野では、AIを活用することで攻撃準備の時間が大幅に短縮され、従来では限られた高度な攻撃者だけが可能だった手法が、より多くの攻撃者の手に届くようになりました。これにより、企業規模や業種を問わず、あらゆる組織や個人が標的になり得る時代が到来しています。

防御側もAI-DRといった新しい技術を取り入れ、検知と対応のスピードを高めていく必要があります。しかし、それと同時に忘れてはならないのは、セキュリティの基本を徹底すること です。システムを常に最新に保つ、多要素認証を導入する、バックアップを備える、といった取り組みはどの規模の組織にとっても現実的かつ有効な防御策です。

AIが攻撃を容易にする現状において重要なのは、「自分たちは狙われない」という思い込みを捨てることです。むしろ、誰もが標的になり得るという前提で日々のセキュリティ運用を行う姿勢 が求められます。AIがもたらす利便性と同じくらい、そのリスクを理解し、備えを怠らないことが今後のサイバー防御における鍵となるでしょう。

参考文献

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!
目次