NVIDIAとSamsungが戦略的協業を発表 ― カスタム非x86 CPU/XPUとNVLink Fusionが描く次世代AI半導体構想

2025年10月、NVIDIA CorporationとSamsung Electronicsが、カスタム非x86 CPUおよびXPU(汎用・専用処理を統合した次世代プロセッサ)に関する協業を発表しました。本提携は、NVIDIAが推進する高速インターコネクト技術「NVLink Fusion」エコシステムにSamsung Foundryが正式に参加し、設計から製造までの包括的支援体制を構築するものです。

この発表は、AIインフラ市場におけるNVIDIAの戦略的な転換点と位置づけられています。従来、NVIDIAはGPUを中心とする演算基盤の提供企業として知られてきましたが、近年ではCPUやアクセラレータ、さらには通信層まで含めたプラットフォーム全体の最適化を志向しています。一方のSamsungは、TSMCやIntelなどの競合と並び、先端半導体製造分野で存在感を強めており、今回の協業によって自社のファウンドリ事業をAI分野へ拡張する狙いを明確にしました。

本記事では、この協業の概要と技術的背景を整理した上で、業界構造への影響、アナリストによる評価、そして今後の展望について考察します。AIチップ市場の競争が加速する中で、NVIDIAとSamsungが描く新たなエコシステムの構想を冷静に分析します。

NVIDIAとSamsungの協業概要

NVIDIAとSamsungの協業は、AI時代における半導体設計と製造の新たな方向性を示すものです。両社は2025年10月、カスタム非x86 CPUおよびXPU(CPUとアクセラレータを統合した高性能プロセッサ)の共同開発体制を発表しました。Samsung Foundryは、NVIDIAが主導する高速接続基盤「NVLink Fusion」エコシステムに参画し、設計からテープアウト、量産までを一貫して支援する役割を担います。

この取り組みは、単なる製造委託契約にとどまらず、AI処理向けシステム全体を最適化する「プラットフォーム協調型」構想として位置づけられています。NVIDIAはGPUを中心とした計算プラットフォームの支配的地位を強化しつつ、CPUやカスタムチップを自社エコシステム内で連携可能にすることで、データセンターからクラウドまでを包含する統合的な基盤を形成しようとしています。

一方で、Samsungにとって本協業は、自社の先端プロセス技術をAI向けロジック半導体へ展開する重要な機会であり、TSMCやIntel Foundry Servicesに対抗する新たな戦略的提携とみなされています。

発表の経緯と目的

NVIDIAとSamsungの協業発表は、AIインフラ需要の急拡大を背景として行われました。生成AIや大規模言語モデル(LLM)の普及に伴い、従来のGPU単独では処理能力や電力効率に限界が見え始めており、CPUやアクセラレータを組み合わせた複合的な計算アーキテクチャの重要性が高まっています。NVIDIAはこうした状況に対応するため、GPUを中核としながらも、外部のカスタムチップを同一インターコネクト上で動作させる仕組みの整備を進めてきました。

その中核に位置づけられているのが、同社が推進する「NVLink Fusion エコシステム」です。これは、GPU・CPU・XPUなど複数の演算デバイス間を高速かつ低遅延で接続するための技術基盤であり、AIサーバーやハイパースケールデータセンターの拡張性を支える要素とされています。今回の発表では、このNVLink Fusion にSamsung Foundryが正式に参加し、設計段階から製造・実装までの包括的支援を行うことが明らかにされました。

この協業の目的は、NVIDIAが描く「GPUを中心とした統合計算プラットフォーム」をさらに拡張し、CPUやXPUを含めた総合的な演算基盤としてのエコシステムを確立することにあります。Samsung側にとっても、AIおよびHPC(高性能計算)市場における先端ロジック半導体需要の取り込みを図るうえで、NVIDIAとの連携は戦略的な意味を持ちます。両社の利害が一致した結果として、AI時代の新しい半導体製造モデルが具体化したといえます。

カスタム非x86 CPU/XPUとは

カスタム非x86 CPUおよびXPUとは、従来のx86アーキテクチャ(主にIntelやAMDが採用する命令体系)に依存しない、特定用途向けに最適化されたプロセッサ群を指します。これらは一般的な汎用CPUとは異なり、AI推論・機械学習・科学技術計算など、特定の計算処理を効率的に実行するために設計されます。

「非x86」という表現は、アーキテクチャの自由度を高めることを意味します。たとえば、ArmベースのCPUやRISC-Vアーキテクチャを採用する設計がこれに該当します。こうしたプロセッサは、電力効率・演算密度・データ転送性能の観点で柔軟に最適化できるため、大規模AIモデルやクラウドインフラにおいて急速に採用が進んでいます。

一方、「XPU」という用語は、CPU(汎用処理装置)とGPU(並列処理装置)の中間に位置する概念として使われます。XPUは、汎用的な命令処理能力を保持しつつ、AI推論やデータ解析など特定分野に特化したアクセラレータ機能を統合したプロセッサを指します。つまり、CPU・GPU・FPGA・ASICといった異なる設計思想を融合し、用途に応じて最適な演算を選択的に実行できるのが特徴です。

今回の協業でNVIDIAとSamsungが目指しているのは、このXPUをNVLink Fusionエコシステム内でGPUと連携させ、統一的な通信インフラの上で高効率な並列計算を実現することです。これにより、AI処理向けのハードウェア構成が従来の固定的なCPU-GPU構造から、より柔軟かつ拡張性の高いアーキテクチャへと進化していくことが期待されています。

技術的背景 ― NVLink Fusionの狙い

NVIDIAが推進する「NVLink Fusion」は、AI時代におけるデータ転送と演算統合の中核を担う技術として位置づけられています。従来のサーバー構成では、CPUとGPUがPCI Express(PCIe)などの汎用インターフェースを介して接続されていましたが、この構造では帯域幅の制約や通信遅延がボトルネックとなり、大規模AIモデルの学習や推論処理において性能限界が顕在化していました。

こうした課題を解決するため、NVIDIAは自社のGPUと外部プロセッサ(CPUやXPU)をより密結合させ、高速・低遅延でデータを共有できる新しいインターコネクトとしてNVLink Fusionを開発しました。この技術は単なる物理的接続の強化にとどまらず、演算資源全体を1つの統合システムとして動作させる設計思想を持っています。

今回のSamsungとの協業により、NVLink Fusion対応のカスタムシリコンがSamsung Foundryの先端プロセスで製造可能となり、AI向けプロセッサの多様化とエコシステム拡張が現実的な段階へ進みました。これにより、NVIDIAはGPU単体の性能競争から、システム全体のアーキテクチャ競争へと軸足を移しつつあります。

インターコネクト技術の重要性

AIや高性能計算(HPC)の分野において、インターコネクト技術は単なる補助的な通信手段ではなく、システム全体の性能を左右する中核要素となっています。大規模なAIモデルを効率的に学習・推論させるためには、CPU・GPU・アクセラレータ間で膨大なデータを高速かつ低遅延でやり取りする必要があります。演算性能がどれほど高くても、データ転送が遅ければ全体の処理効率は著しく低下するため、通信帯域とレイテンシ削減の両立が極めて重要です。

従来のPCI Express(PCIe)インターフェースは、汎用性の高さから長年にわたり標準的な接続方式として採用されてきましたが、AI時代の演算要求には十分対応できなくなりつつあります。そこでNVIDIAは、GPU間やGPUとCPU間のデータ転送を最適化するために「NVLink」シリーズを開発し、帯域幅とスケーラビリティを飛躍的に向上させました。最新のNVLink Fusionでは、これまでGPU専用だった通信を外部チップにも拡張し、CPUやXPUなど異種プロセッサ間でも同一インターコネクト上で協調動作が可能となっています。

この仕組みにより、複数の演算デバイスがあたかも1つの統合メモリ空間を共有しているかのように動作し、データ転送を意識せずに高効率な分散処理を実現できます。結果として、AIモデルの学習速度向上やエネルギー効率改善が期待されるほか、システム全体の拡張性と柔軟性が飛躍的に高まります。つまり、インターコネクト技術は、ハードウェア性能を最大限に引き出す「隠れた基盤技術」として、次世代AIコンピューティングに不可欠な存在となっているのです。

Samsung Foundryの役割

Samsung Foundryは、今回の協業においてNVIDIAの技術基盤を現実の製品として具現化する中核的な役割を担っています。同社は半導体製造における最先端のプロセス技術を保有しており、特に3ナノメートル(nm)世代のGAA(Gate-All-Around)トランジスタ技術では、量産段階に到達している数少ないファウンドリの一つです。これにより、NVIDIAが構想するNVLink Fusion対応のカスタムシリコンを高密度かつ高効率で製造することが可能となります。

Samsung Foundryは従来の製造委託(pure foundry)モデルに加え、設計支援からテープアウト、パッケージング、検証までを包括的にサポートする「Design-to-Manufacturing」体制を強化しています。NVIDIAとの協業では、この一貫したエンジニアリング体制が活用され、顧客の要件に応じたカスタムCPUやXPUを迅速に試作・量産できる環境が整えられます。このような包括的支援体制は、AI分野の開発スピードが年単位から月単位へと短縮されている現状において、極めて重要な競争要素となっています。

また、Samsung Foundryの参画は、NVLink Fusionエコシステムの拡張にも大きな意味を持ちます。NVIDIAが提供するインターコネクト仕様を、Samsung側の製造プラットフォーム上で直接適用できるようになることで、NVIDIAのエコシステムを利用したカスタムチップの開発・製造が容易になります。これにより、AIやHPC分野の多様な企業が自社の要求に合ったカスタムシリコンを設計できるようになり、結果としてNVIDIAのプラットフォームを中心とした新たな半導体開発の潮流が形成される可能性があります。

業界構造への影響

NVIDIAとSamsungの協業は、単なる技術提携にとどまらず、半導体産業全体の勢力図に影響を与える可能性を持っています。AIを中心とした高性能演算需要の拡大により、半導体市場は「汎用CPU中心の時代」から「用途特化型チップと統合アーキテクチャの時代」へと移行しつつあります。この流れの中で、両社の連携は設計・製造・接続を一体化した新しい供給モデルを提示するものであり、ファウンドリ業界やクラウド事業者、AIハードウェアベンダーに対して大きな戦略的示唆を与えています。

NVIDIAが推進するNVLink Fusionエコシステムは、従来のサーバー構成やチップ設計の分業構造を再定義する可能性を秘めています。これまで、チップ設計を行う企業と製造を担うファウンドリは明確に役割を分けてきましたが、今回の協業はその境界を曖昧にし、エコシステム内で設計・製造が緊密に統合された新たなモデルを形成しています。結果として、NVIDIAがAIコンピューティング分野で築いてきた支配的地位は、ハードウェア構造全体へと拡張しつつあります。

この章では、ファウンドリ業界の競争構造と、NVIDIAが進めるエコシステム拡張が市場全体にどのような変化をもたらすのかを検討します。

ファウンドリ業界の勢力図


ファウンドリ業界は、近年ますます寡占化が進んでおり、先端プロセスを扱う企業は世界でも限られています。現在、最先端の3ナノメートル(nm)級プロセスを商業規模で提供できるのは、台湾のTSMC(Taiwan Semiconductor Manufacturing Company)と韓国のSamsung Foundryの2社のみです。この二強構造に、米国のIntel Foundry Services(旧Intel Foundry Group)が追随しようとしているのが現状です。

TSMCはApple、AMD、NVIDIA、Qualcommなど、世界の主要半導体設計企業を顧客に持ち、その安定した製造品質と高い歩留まりによって圧倒的なシェアを維持しています。一方のSamsung Foundryは、先端プロセスの量産技術においてTSMCに対抗する唯一の存在であり、自社グループ内でメモリ・ロジック・パッケージを統合的に扱える点で独自の強みを持っています。

今回のNVIDIAとの協業は、Samsungにとってこの競争構造の中でポジションを強化する重要な契機となります。これまでNVIDIAはTSMCの製造能力に大きく依存してきましたが、Samsung FoundryがNVLink Fusionエコシステムに正式参加したことで、NVIDIAは製造リスクの分散とサプライチェーンの多様化を図ることができます。これにより、SamsungはTSMCに対して技術的・経済的な競争優位を再構築する足掛かりを得たといえます。

また、Intel Foundry Servicesは、米国内での製造強化と先端ノードの開発を進めているものの、顧客獲得や量産実績の面ではまだ発展途上です。結果として、今回のNVIDIA–Samsung協業は、TSMCの一極集中構造に対して一定の牽制効果をもたらし、世界のファウンドリ勢力図に新たな緊張関係を生み出したと評価されています。

エコシステム拡張と競争環境

NVIDIAとSamsungの協業は、単なる製造委託の枠を超え、NVIDIAが長年築いてきた独自エコシステムを外部パートナーへ拡張する試みとして注目されています。NVLink Fusionを中心とするこのエコシステムは、GPU・CPU・XPUといった異種プロセッサ間を高速かつ低遅延で接続し、統合的な計算基盤を構築することを目的としています。これにより、AIデータセンターやハイパースケール環境で求められる高効率な演算処理を、チップレベルから最適化できる体制が整いつつあります。

一方で、NVIDIAはこのエコシステムを開放的に展開する姿勢を見せつつも、通信プロトコルや制御仕様などの中核部分を自社で掌握しています。そのため、NVLink Fusionに参加する企業は一定の技術的制約のもとで設計を行う必要があり、完全なオープン標準とは言い難い側面もあります。こうした構造は、NVIDIAのプラットフォーム支配力を強化する一方で、パートナー企業にとっては依存度の高い関係を生み出す可能性があります。

競争環境の観点から見ると、この動きは既存のファウンドリおよびチップメーカーに新たな圧力を与えています。TSMCやIntelは、顧客の設計自由度を確保しつつオープンな開発環境を提供する方向に注力していますが、NVIDIAは「性能と統合性」を軸にエコシステムを囲い込む戦略を採っています。特に生成AIや高性能クラウドの分野では、ソフトウェアからハードウェアまでを一体化したNVIDIAのプラットフォームが標準化しつつあり、他社が参入しにくい構造が形成されつつあります。

このように、NVIDIAとSamsungの協業は、AIハードウェア業界における「統合型エコシステム対オープン型エコシステム」という新しい競争軸を生み出しました。今後は、どのモデルが市場の支持を得るかによって、半導体産業全体の主導権が再び移り変わる可能性があります。

アナリストの見解と市場評価

NVIDIAとSamsungの協業発表は、半導体業界内外のアナリストから大きな関心を集めています。特にAIインフラ市場の急成長と、それに伴う計算アーキテクチャの多様化を背景に、この提携は単なる企業間の協力ではなく、「プラットフォーム主導型競争」の新段階を示すものとして受け止められています。

複数の市場調査機関や業界メディアは、本件を「戦略的転換点」と位置づけています。NVIDIAがGPU中心の事業構造から、シリコン設計・インターコネクト・システム構築を包括する総合的なプラットフォーム戦略へと移行しつつある点を評価する一方で、エコシステムの閉鎖性や製造依存リスクに対する懸念も指摘されています。

この章では、TrendForceやTechRadar、Wccftechなど主要なアナリストの分析をもとに、市場が本協業をどのように評価しているかを整理します。評価の焦点は「プラットフォーム戦略の深化」と「オープン性・供給リスク」という二つの軸に集約されており、これらを中心に分析していきます。

評価点:プラットフォーム戦略の深化

アナリストの多くは、今回の協業をNVIDIAの長期的な戦略転換の一環として高く評価しています。これまで同社はGPUを中心とする演算基盤で市場をリードしてきましたが、今後はCPUやXPU、さらにはインターコネクト技術を含めた「統合プラットフォーム」を構築する方向へと進化しています。NVLink Fusionエコシステムを核に据えることで、NVIDIAは演算装置の多様化に対応しつつ、自社技術を基盤としたエコシステム全体の支配力を強化しようとしている点が注目されています。

TrendForceは、この取り組みを「GPU中心の事業モデルから、プラットフォーム型エコシステムへの移行を象徴する動き」と分析しています。これにより、NVIDIAは単なるチップベンダーではなく、AIコンピューティング全体を統合するアーキテクトとしての地位を確立しつつあります。特に、GPU・CPU・アクセラレータをNVLinkで一体化する設計思想は、データセンター全体を一つの巨大演算ユニットとして機能させるものであり、これまでの「デバイス単位の性能競争」から「システム全体の最適化競争」へと発想を転換させています。

また、WccftechやTechRadarの分析では、Samsungとの連携によりNVIDIAが製造キャパシティの多様化と供給安定化を図っている点が評価されています。これにより、TSMCへの依存を緩和しつつ、AIチップの開発スピードと柔軟性を高めることが可能になります。さらに、NVLink Fusionを通じて他社製カスタムチップとの接続を支援する構造は、外部企業の参加を促進する効果を持ち、NVIDIAのプラットフォームを事実上の業界標準へ押し上げる可能性があります。

アナリストは本協業を「NVIDIAがAIコンピューティングのインフラ層を再定義する動き」と捉えており、その影響はGPU市場を超えて、半導体産業全体のアーキテクチャ設計思想に波及すると見られています。

懸念点:オープン性と供給リスク

一方で、アナリストの間では本協業に対して一定の懸念も示されています。その多くは、NVIDIAが構築するエコシステムの「閉鎖性」と「供給リスク」に関するものです。NVLink Fusionは、極めて高性能なインターコネクト技術として注目を集めていますが、その仕様や制御層はNVIDIAが厳密に管理しており、第三者が自由に拡張・実装できるオープン標準とは言い難い構造となっています。

TechRadarは、「NVIDIAがプラットフォーム支配力を強化する一方で、NVLink Fusion対応チップの開発企業はNVIDIAの技術仕様に従わざるを得ない」と指摘しています。このため、NVLinkを採用する企業は高性能化の恩恵を受ける反面、設計上の自由度や独自最適化の余地が制限される可能性があります。結果として、NVIDIAエコシステム内での“囲い込み”が進み、パートナー企業がベンダーロックインの状態に陥る懸念が生じています。

また、供給リスクの観点でも慎重な見方が見られます。Samsung Foundryは先端プロセス技術において世界有数の能力を持つ一方、TSMCと比較すると歩留まりや量産安定性に関して課題を抱えているとの指摘があります。特にAI用途では、製造品質のわずかな差が性能・電力効率・コストに直結するため、安定した供給体制をどこまで確保できるかが注目されています。

さらに、地政学的リスクも無視できません。半導体製造は国際的な供給網に依存しており、地政学的緊張や輸出規制の影響を受けやすい産業です。Samsungが韓国を中心に製造拠点を持つ以上、国際情勢によって供給計画が左右される可能性があります。

アナリストは本協業を「高性能化とエコシステム強化の両立を目指す挑戦」と評価する一方で、オープン性の欠如や供給リスクをいかに管理・緩和するかが今後の鍵になると分析しています。

今後の展望

NVIDIAとSamsungの協業は、AIコンピューティング分野における新たな技術的潮流の起点となる可能性があります。特に、NVLink Fusionを軸とした統合アーキテクチャの拡張は、今後のデータセンター設計やAIチップ開発の方向性を大きく左右することが予想されます。従来のようにCPUとGPUを個別のコンポーネントとして接続するのではなく、演算・通信・メモリを一体化した「統合演算基盤(Unified Compute Fabric)」への移行が現実味を帯びてきました。

今後、NVLink Fusion対応のカスタムシリコンが実用化されれば、AIモデルの学習や推論処理の効率はさらに向上し、ハードウェア間の連携がシームレスになると考えられます。これにより、クラウド事業者やハイパースケールデータセンターは、特定用途に最適化された演算構成を柔軟に設計できるようになります。結果として、AIチップ市場は「汎用GPU依存型」から「カスタムXPU分散型」へと進化し、アーキテクチャの多様化が進むと見込まれます。

一方で、NVLink Fusionが業界標準として定着するかどうかは、今後のエコシステム形成にかかっています。NVIDIAが自社主導の仕様をどこまで開放し、外部パートナーとの協調を促進できるかが、広範な採用に向けた最大の課題となるでしょう。もしNVLink Fusionが限定的なプラットフォームにとどまれば、他社が推進するオープン型インターコネクト(例:CXLやUCIe)が対抗軸として成長する可能性もあります。

Samsungにとっては、本協業を通じて先端ロジック分野でのプレゼンスを拡大できるかが焦点となります。AI需要の増大に対応するためには、高歩留まり・安定供給・短期試作といった製造面での実績を積み重ねることが不可欠です。

本協業はAIハードウェア産業の将来像を方向づける試金石といえます。今後数年の技術進展と市場動向次第では、NVIDIAとSamsungの提携が次世代AIインフラの標準的モデルとなる可能性があります。

おわりに

NVIDIAとSamsungの協業は、AI時代の半導体産業が直面する構造変化を象徴する出来事といえます。両社は、従来のGPU中心型の演算構造を超え、CPUやXPUを含む多様なプロセッサを統合的に連携させる新たなアーキテクチャを提示しました。この取り組みは、AI処理の効率化やデータセンターの最適化に向けた現実的な解であると同時に、今後の半導体開発モデルを大きく変える可能性を持っています。

NVLink Fusionを基盤とするこの戦略は、NVIDIAにとって自社のエコシステムをさらに拡張し、ハードウェアからソフトウェア層までを一体化するプラットフォーム支配力を強化する動きです。一方で、Samsungにとっても、AI向けロジック半導体の製造分野において存在感を高める重要な機会となりました。両社の協業は、ファウンドリ業界の勢力図を再構成し、TSMCやIntelなど既存大手との競争を新たな段階へと押し上げています。

ただし、この構想が長期的に成功を収めるためには、技術的な優位性だけでなく、エコシステムの持続性と供給の安定性が不可欠です。NVIDIAがどこまでオープン性を確保し、パートナー企業と共存できるか、そしてSamsungが高品質な量産体制を維持できるかが、今後の鍵を握ります。

AIインフラを巡る競争は、もはや単一製品の性能ではなく、全体最適化と連携の設計力が問われる段階に入りました。NVIDIAとSamsungの協業は、その未来への一つの方向性を提示しており、半導体産業の新たな競争軸を形成する可能性を示しています。

参考文献

TSMC 2nmをめぐる最新動向 ― ウェハー価格上昇とAppleの戦略

半導体業界は「微細化の限界」と言われて久しいものの、依然として各社が最先端プロセスの開発競争を続けています。その中で、世界最大の半導体受託製造企業であるTSMCが進める2nmプロセス(N2)は、業界全体から大きな注目を集めています。

2nm世代は、従来のFinFETに代わりGate-All-Around(GAA)構造を導入する初めてのノードとされ、トランジスタ密度や電力効率の向上が期待されます。スマートフォンやPC、クラウドサーバー、AIアクセラレーターといった幅広い分野で性能を大きく押し上げる可能性があり、「ポスト3nm時代」を象徴する存在です。

一方で、その先進性は製造コストや生産性の課題をも伴います。すでに報道では、2nmプロセスのウェハー価格が3nm世代と比較して50%近い上昇に達するとの指摘があり、さらに現状では歩留まりが十分に安定していないことも明らかになっています。つまり、技術革新と同時に製造面でのリスクとコスト増大が顕著になっているのです。

この状況下、世界中の大手テック企業が次世代チップの供給確保に動き出しており、特にAppleがTSMCの生産能力を大量に確保したというニュースは市場に大きな衝撃を与えました。2nmは単なる技術トピックにとどまらず、産業全体の競争構造や製品価格に直結する要素となっています。

本記事では、まず2nmウェハーの価格動向から始め、歩留まりの現状、大手企業の動き、Appleの戦略と今後の採用見通しを整理した上で、来年以降に訪れる「2nm元年」の可能性と、その先に待ち受けるコスト上昇の現実について考察します。

ウェハー価格は前世代から大幅上昇

TSMCの2nmウェハー価格は、前世代3nmに比べておよそ50%の上昇と報じられています。3nm世代のウェハーは1枚あたり約2万ドル(約300万円)とされていましたが、2nmでは少なくとも3万ドル(約450万円)に達すると見られています。さらに先の世代である1.6nmでは、4万5,000ドル前後にまで価格が跳ね上がるという推測すらあり、先端ノードごとにコスト負担が指数関数的に増加している現状が浮き彫りになっています。

こうした価格上昇の背景にはいくつかの要因があります。まず、2nmでは従来のFinFETからGate-All-Around(GAA)構造へと移行することが大きな要因です。GAAはトランジスタ性能や電力効率を大幅に改善できる一方で、製造プロセスが従来より格段に複雑になります。その結果、製造装置の調整やプロセス工程数の増加がコストを押し上げています。

次に、TSMCが世界各地で進める巨額の先端ファブ投資です。台湾国内だけでなく、米国や日本などで建設中の工場はいずれも最先端ノードの生産を視野に入れており、膨大な初期投資が価格に転嫁されざるを得ません。特に海外拠点では人件費やインフラコストが高く、現地政府の補助金を差し引いても依然として割高になるのが実情です。

さらに、初期段階では歩留まりの低さが価格を直撃します。1枚のウェハーから取り出せる良品チップが限られるため、顧客が実際に得られるダイ単価は名目価格以上に高騰しやすい状況にあります。TSMCとしては価格を引き上げることで投資回収を急ぐ一方、顧客側は最先端性能を求めざるを得ないため、高価格でも契約に踏み切るという構図になっています。

このように、2nmウェハーの価格上昇は単なるインフレではなく、技術革新・投資負担・歩留まりの三重要因による必然的な現象といえます。結果として、CPUやGPUなどの高性能半導体の製造コストは上昇し、その影響は最終製品価格にも波及していくことが避けられないでしょう。

現状の歩留まりは60%前後に留まる

TSMCの2nmプロセス(N2)は、まだ立ち上げ期にあり、複数の調査会社やアナリストの報道によると歩留まりはおよそ60〜65%程度にとどまっています。これは製造されたウェハーから得られるチップの約3分の1〜4割が不良として排出されていることを意味し、最先端ノードにありがちな「コストの高さ」と直結しています。

特に2nmでは、従来のFinFETからGate-All-Around(GAA)構造への大きな転換が行われており、製造工程の複雑化と新規設備の調整難易度が歩留まりの低さの背景にあります。トランジスタの立体構造を完全に囲む形でゲートを形成するGAAは、電力効率と性能を大幅に改善できる一方で、極めて精密な露光・堆積・エッチング工程が必要となります。この過程での微小な誤差や欠陥が、最終的に良品率を押し下げる要因になっています。

過去の世代と比較すると違いが鮮明です。たとえば5nm世代(N5)は量産初期から平均80%、ピーク時には90%以上の歩留まりを達成したとされ、立ち上がりは比較的順調でした。一方で3nm世代(N3)は当初60〜70%と報じられ、一定期間コスト高を強いられましたが、改良版のN3Eへの移行により歩留まりが改善し、価格も安定していきました。これらの事例からすると、N2が安定的に市場価格を維持できるためには、少なくとも80%前後まで歩留まりを引き上げる必要があると推測されます。

歩留まりの低さは、顧客にとって「同じ価格で得られるチップ数が少ない」ことを意味します。例えばウェハー1枚あたりの価格が3万ドルに達しても、歩留まりが60%であれば実際に市場に出回るチップ単価はさらに高くなります。これはCPUやGPUなどの最終製品の価格を押し上げ、クラウドサービスやスマートフォンの価格上昇にも直結します。

TSMCは公式に具体的な歩留まり数値を開示していませんが、同社は「2nmの欠陥密度は3nmの同時期よりも低い」と説明しており、学習曲線が順調に進めば改善は見込めます。とはいえ現状では、量産初期特有の不安定さを脱して価格安定に至るには、まだ数四半期の時間が必要と考えられます。

大手テック企業による争奪戦

TSMCの2nmプロセスは、まだ歩留まりが安定しないにもかかわらず、世界の主要テック企業がすでに「確保競争」に乗り出しています。背景には、AI・クラウド・スマートフォンといった需要が爆発的に拡大しており、わずかな性能・効率の優位性が数十億ドル規模の市場シェアを左右しかねないという事情があります。

報道によれば、TSMCの2nm顧客候補は15社程度に上り、そのうち約10社はHPC(高性能計算)領域のプレイヤーです。AMDやNVIDIAのようにAI向けGPUやデータセンター用CPUを手掛ける企業にとって、最新ノードの確保は競争力の源泉であり、1年でも導入が遅れれば市場シェアを失うリスクがあります。クラウド分野では、Amazon(Annapurna Labs)、Google、Microsoftといった巨大事業者が自社開発チップを推進しており、彼らも2nm採用のタイミングを伺っています。

一方、モバイル市場ではQualcommやMediaTekといったスマートフォン向けSoCベンダーが注目株です。特にMediaTekは2025年中に2nmでのテープアウトを発表しており、次世代フラッグシップ向けSoCへの採用を進めています。AI処理やグラフィックス性能の競争が激化する中、電力効率の改善を強みに打ち出す狙いがあるとみられます。

さらに、Intelも外部ファウンドリ利用を強化する中で、TSMCの2nmを採用すると報じられています。従来、自社工場での生産を主軸としてきたIntelが、他社の最先端ノードを活用するという構図は業界にとって大きな転換点です。TSMCのキャパシティがどこまで割り当てられるかは未確定ですが、2nm競争に名を連ねる可能性は高いとみられています。

こうした熾烈な争奪戦の背後には、「需要に対して供給が絶対的に不足する」という構造的問題があります。2nmは立ち上がり期のため量産枚数が限られており、歩留まりもまだ6割前後と低いため、実際に顧客に供給できるチップ数は極めて少ないのが現状です。そのため、初期キャパシティをどれだけ確保できるかが、今後数年間の市場での優位性を決定づけると見られています。

結果として、Apple、AMD、NVIDIA、Intel、Qualcomm、MediaTekなど名だたる企業がTSMCのキャパシティを巡って交渉を繰り広げ、半導体産業における“地政学的な椅子取りゲーム”の様相を呈しています。この競争は価格上昇を一段と助長する要因となり、消費者製品からデータセンターに至るまで広範囲に影響を及ぼすと予想されます。

Appleは生産能力の約50%を確保

大手各社がTSMCの2nmプロセスを求めて競争する中で、最も抜きん出た動きを見せているのがAppleです。DigiTimesやMacRumors、Wccftechなど複数のメディアによると、AppleはTSMCの2nm初期生産能力の約半分、あるいは50%以上をすでに確保したと報じられています。これは、月間生産能力が仮に4.5万〜5万枚規模でスタートする場合、そのうち2万枚以上をAppleが押さえる計算になり、他社が利用できる余地を大きく圧迫することを意味します。

Appleがこれほどの優先権を得られる理由は明白です。同社は長年にわたりTSMCの最先端ノードを大量に採用してきた最大顧客であり、5nm(A14、M1)、3nm(A17 Pro、M3)といった世代でも最初に大量発注を行ってきました。その結果、TSMCにとってAppleは極めて重要な安定収益源であり、戦略的パートナーでもあります。今回の2nmでも、Appleが優先的に供給枠を確保できたのは必然といえるでしょう。

この動きは、Appleの製品戦略とも密接に結びついています。同社はiPhoneやMac、iPadといった主力製品に自社設計のSoCを搭載しており、毎年秋の新モデル発表に合わせて数千万個規模のチップ供給が不可欠です。供給が滞れば製品戦略全体に影響が出るため、先行してキャパシティを押さえておくことは競争力の維持に直結します。さらに、Appleはサプライチェーンのリスク管理にも非常に敏感であり、コストが高騰しても安定供給を最優先する姿勢を崩していません。

AppleがTSMC 2nmの半分を確保したことは、業界に二つの影響を与えます。第一に、他の顧客に割り当てられる生産枠が大きく制限され、AMD、NVIDIA、Qualcommといった競合企業はより少ないキャパシティを分け合う形になります。第二に、TSMCの投資判断にとっても「Appleがこれだけの規模でコミットしている」という事実は強力な保証となり、数兆円規模の先端ファブ投資を後押しする要因となります。

こうしてAppleは、単なる顧客という枠を超えて、TSMCの先端ノード開発を牽引する存在になっています。2nm世代においても、Appleの戦略的な調達力と製品展開が業界全体のスケジュールを事実上規定していると言っても過言ではありません。

Apple製品での採用時期は?

では、実際にApple製品にTSMCの2nmプロセスがいつ搭載されるのでしょうか。業界関係者や各種リーク情報を総合すると、最有力とされているのは2026年に登場する「iPhone 18」シリーズ向けのA20チップです。TSMCの2nm量産が2025年後半から本格化し、翌年に商用製品へ反映されるというスケジュール感は、過去のプロセス移行と整合的です。

また、Mac向けのSoCについても、M5は3nmの強化版に留まり、M6で2nmへ刷新されるという噂が広く報じられています。BloombergやMacRumorsなどの分析では、M6世代は大幅な性能改善に加え、新しいパッケージング技術(たとえばWMCM: Wafer-Level Multi-Chip Module)を採用する可能性もあるとされています。これによりCPUコア数やGPU性能、Neural Engineの処理能力が飛躍的に向上し、AI処理においても他社に先んじる狙いがあると見られます。

さらに、iPad Proや次世代のVision Proといったデバイスにも、2nm世代のチップが投入される可能性が指摘されています。とりわけiPad Proについては、2027年頃にM6シリーズを搭載するというリークがあり、モバイルデバイスにおいても性能・効率の両面で大きな刷新が予想されます。

一方で、この時期予測には不確実性も残ります。TSMCの歩留まり改善が想定より遅れた場合、Appleが2nmを最初に採用する製品が限定される可能性もあります。たとえばiPhoneに優先的に投入し、MacやiPadへの展開を1年程度遅らせるシナリオもあり得ます。また、Appleはサプライチェーンのリスク管理に極めて慎重であるため、量産の安定度が不十分と判断されれば、3nmの成熟プロセス(N3EやN3P)を暫定的に使い続ける可能性も否定できません。

とはいえ、Appleが2nmの初期キャパシティの過半を押さえている以上、業界で最も早く、かつ大規模に2nmを製品へ搭載する企業になるのはほぼ間違いありません。過去にもA14チップで5nm、A17 Proチップで3nmを先行採用した実績があり、2nmでも同様に「Appleが最初に世代を開く」構図が再現される見込みです。

おわりに ― 2026年は「2nm元年」か

TSMCの2nmプロセスは、2025年後半から試験的な量産が始まり、2026年に本格的な商用展開を迎えると予想されています。これは単なる技術移行ではなく、半導体業界全体にとって「2nm元年」と呼べる大きな節目になる可能性があります。

まず、技術的な意味合いです。2nmはFinFETからGate-All-Around(GAA)への移行を伴う初めての世代であり、単なる縮小にとどまらずトランジスタ構造そのものを刷新します。これにより、電力効率の改善や性能向上が期待され、AI処理やHPC、モバイルデバイスなど幅広い分野で次世代アプリケーションを可能にする基盤となるでしょう。

次に、産業構造への影響です。Appleをはじめとする大手テック企業がこぞって2nmのキャパシティ確保に動いたことは、サプライチェーン全体に緊張感を生み出しました。特にAppleが初期生産能力の過半を押さえたことで、他社は限られた供給枠を奪い合う構図になっており、このことが業界の競争力の差をさらに拡大させる可能性があります。TSMCにとっては巨額の投資を正当化する材料となる一方、顧客にとっては交渉力の低下というリスクを抱えることになります。

そして何より重要なのは、価格上昇の波及効果です。ウェハー価格は3万ドル規模に達し、歩留まりの低さも相まってチップ単価はさらに高止まりする見込みです。結果として、CPUやGPUといった基幹半導体の調達コストが跳ね上がり、それを組み込むスマートフォンやPC、サーバー機器の販売価格に直接反映されるでしょう。一般消費者にとってはスマートフォンのハイエンドモデルが一層高額化し、企業にとってはクラウドサービスやデータセンター運用コストの上昇につながると考えられます。

総じて、2026年は「2nm元年」となると同時に、半導体の価格上昇が不可避な一年でもあります。技術革新の恩恵を享受するためには、ユーザーや企業もコスト負担を受け入れざるを得ない時代が来ていると言えるでしょう。これからの数年間、2nmを軸にした半導体業界の動向は、IT製品の価格や普及スピードに直結するため、注視が欠かせません。

参考文献

モバイルバージョンを終了